
NASA Contractor Report 177608

///-o _
.--:_-_ ,fp "? j.

/.__ / LL_-,'_./__ _j

/_. _

Image-Based Ranging and
Guidance for Rotorcraft
P. K. A. Menon

(NASA-C_-IT7608) IMAGE-_ASED

RANGING AND GUIDANCE FOR ROTORCRAFT

(Georgia Inst. of Tech.) 80 p

N9]-25549

Unclas

G3/04 0159302

CONTRACT NCC2-575
December 1991

NASA
National Aeronautics and
Space Administration





NASA Contractor Report 177608

Image-Based Ranging and
Guidance for Rotorcraft
P. K. A. Menon

Georgia Institute of Technology

School of Aerospace Engineering

Atlanta, GA 30332-0150

Prepared for
Ames Research Center

CONTRACT NCC2-575
December 1991

NP_A
NationalAeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000





Table of Contents

1. Introduction

2. Development of a Field-Based Ranging Equation

3. Ranging Based on Taylor Series Expansion

4. A Partial Derivative Estimation Method and its use in

Vision-Based Ranging

5. Derivative-Free Vision-Based Ranging

6. Guidance Law For Vision-Based Aircraft Maneuvers

7. Conclusions

Acknowledgement

References

Page

1

2

11

24

52

64

74

76

76

iii

PREGEDING PAGE BLANK NOT FILMED





1. Introduction

Vision-based ranging has emerged as the central problem in automating the helicopter nap-of-

the-earth flight regime. Current status of the research in vision-based ranging at NASA Ames is

summarized in Reference 1. The present work is a component of this research effort.

The recovery of three dimensional geometry from two dimensional scenes is based on the fact that

if one has at least two views of a scene obtained from different vantage points, the difference between

the location of corresponding objects in the images is a measure of the range. The process of finding
the corresponding objects within the field of view is the correspondence problem in machine vision

literature. Correspondence problem can be solved if all the images unambiguously contained every

object in the scene. Since real imaging devices have limited field of view and resolution, concept of

correspondence is in reality a correspondence hypothesis. The relative object displacement obtained by

satisfying the correspondence hypothesis in these images are called disparities. The farther the objects

are with respect to the imaging device, the less the observed disparity would be. For instance, objects

that are very far away would appear at nearly the same location in the images, while closer objects

will exhibit a large disparity. If the disparity of the corresponding objects in an image sequence could

be measured, the perspective projection equations could be used to compute the scene depth. This

fact forms the basis for a large majority of vision-based ranging methods discussed in the literature.

Sometimes, establishing correspondence between several views of the scene may improve the range

estimation accuracy.

Two distinct families of techniques can be identified for satisfying the correspondence hypothesis.

Methods which establish correspondence between relativly few chosen features of interest in the images

are termed feature based methods. On the other hand, techniques which attempt to establish the

correspondence between every point in the images are called t_eld-based methods. The focus of present

research effort is on field-based ranging technique. The present research has its basis in the robot vision

literature [2].

In the present work, a family of field-based ranging algorithms are cast in an analytical format.

An advantage of the analytical approach is that it reveals the means for systematic performance

improvement. If desired, additional heuristics may be included in the formulation to enhance the

algorithm performance.

These ranging algorithms have their basis in a mathematical approximation of the correspondence

hypothesis together with the perspective projection geometry. The central ideas in the present work
are:

* Mathematical approximation of the correspondence hypothesis

• The use of incremental perspective projection in the correspondence hypothesis approximation

to yield vision-based ranging equations

• Methods for estimating ranging equation parameters

Ensuing chapters in this report are based on a few papers written over the past three years. The

motivation and summary of the research is given at the beginning of each chapter, followed by the

paper. The contributions of the present research are given in a condensed form in the Conclusions
section.

A part of the research effort was expended in synthesizing a guidance law for performing obstacle

avoidance using the image-based sensor data. The range data generated by image-based sensors are

generally discrete and are available only at about 10 70 of the points on the image. An optimal

guidance law that explicitly uses the discrete range data together with a nonlinear point-mass vehicle



modelwasformulatedusingthe calculusof variations.Detailsof this guidancelaw developmentand
implementationaregivenin Chapter6.

2. Development of a Field-Based Ranging Equation

Initial phases of the present research focussed on ranging using motion image sequences generated

by a single camera fixed to a moving vehicle. A ranging scheme using temporal image sequences is

developed based on the Optical Flow Constraint Equation of Horn and Schunck [3]. The optical flow

constraint equation relates the temporal partial derivatives with the spatial partial derivatives of the

image irradiance E as:

OE OE OE

O----t+ --uoxp+ --VOzp= o (2.1)

where (xv, zp) are the major and minor axes of the image plane while u and v are called the optical

flow components. Generally, the ranging problem is treated in a two-step fashion. First, the optical
flow components u and v are computed. Since just one expression is available for the calculation of

two quantities, an additional condition has to be imposed to obtain a unique solution. Horn and

Schunk [3] propose the use of a smoothness constraint for the optical flow components to alleviate this

difficulty. The optical flow components are then used for computing the range.

Instead of this two step process, incremental perspective projection can be combined directly with

the optical flow constraint to yield a ranging equation. Since such a concatenation is direct for the

case of purely translational motion of tile camera, this case was investigated first.

The perspective projection relationships for a camera located at a position (x0, !/0) are given by

f(x - Xo) f(z - Zo)
xp - (y _ y0) ' zp - (_ _ yo) (2.2)

These equations can be differentiated to yield the optical flow components as

as :

[xpy0 - f&0] [zpy0 - fz.0]

u_ (v-v0) ' v- (v-v0) (2.3)

Substituting these in the optical flow constraint equation yields an Optical Navigation Equation

OEot [OE __OE" ] l(y _ Y0) (2.4)- -_xp(XpYo - f&o) + _zv(ZpYo - fzo)

This equation can be used to compute the range (y- Y0) from the image irradiance partial deriva-

tives and camera position components. A simulated scene was used to test the algorithm performance.

A paper based on this research was presented at the 1989 AIAA Guidance, Navigation, and Control

Conference discussing the details of this investigation. This paper is included in this chapter.
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Abstract

Rotorcraft operating at low altitudes require nav-

igational schemes for locating the terrain and ob-
stacles. Due to the covert nature of missions to be

accomplished, a passive navigation scheme is de-

sirable. This paper describes the development of

a passive navigation scheme combining image se-

quences from a vehicle mounted camera with ve-

hlcle motion variables. Geometric properties of

perspective projection together with an image it-

radiance tracking scheme at each pixel are used

to determine the range to various objects within
the field-of-view. Derivation of the numerical al-

gorithm and simulation results are given. Other

applications of the proposed approach include nav-

igation for autonomous planetary rovers and teler-
obots.

1 Introduction

The problem of determining the scene geome-

try from on-board sensorsis emerging as a cen-

tral issue in nap-of-the-earthhelicopterflight

guidance1,2. The objectiveof passive naviga-

tion isto use image-based sensorssuch as FLIR

and low-lightlevelTV to determine the range

to variousobjectswithin the field-of-view.Sev-

eralapproaches to the passivenavigationproblem

have been suggestedin recentliteratureI's-8.Ap-

proachesforpassivenavigationusingstereoimage

pairshave alsobeen reportedv.However, with the

exceptionofReference1_none ofthesetechniques

*Member AIAA, Georgia Institute of technology, At-
lanta. MailingAddress:FSN Branch,MS 210-9

tResearchScientist,Member AIAA, FSN Branch,MS
210-9

appear to have been developed to a point where

they can be used for vehicle navigation. Moreover,

there exists an ambiguity regarding the interpre-

tation of the visual navigation task. With the ex-

ception of Reference 1, previous researchers have

tended to interpret image based passive naviga-

tion as the process of simultaneously determining

the vehicle motion and object position parameters

from an image sequence. This can be shown to

produce an under-determined system and the so-

lution can be obtained only by imposing an addi-

tional super-criterion. The present approach, how-

ever, assumes that the vehicle motion parameters

are known from the on-board inertial navigation

system. As a result, the navigation task is to use

the available image sequence together with the in-

ertial navigational information to determine the
relative location of various objects within the field
of view.

The data available in a monochromatic image

is a distribution of image irradiance specified as

a function of imaging device aperture coordinates.
Various points in an image obtained from a mov-

ing vehicle will exhibit an irradiance distribution

change as a function of time. This change depends
on the relative location of various objects, vehicle

motion parameters and the surface reflectance. If
the surface reflectance is assumed to remain con-

stant, then the observed image irradiance distri-

bution change is entirely due to the relative loca-

tion of various objects within the field-of-view and

vehicle motion parameters. In this case, if the ve-

hicle motion parameters and the imaging device

constants are known, it is possible to determine

the realtive location of various points within the

field of view. At this early stage in research, the

investigation will be restricted to objects that are



stationarywith respectto the earth fixedframe.

Additionally,onlypure translationalmotion ofthe

vehiclewillconsidered.

The approach presentedin thispaper has its

roots in the opticalNow constraintequation de-

rived by Horn and Schunck3,4,8.With the as-

sumption thatthe objectswithinthe field-of-view

are fixed,thisequation iscombined with perspec-

tiveprojectiongeometry and the inertialnaviga-

tion system data to derivea directnavigational

equation. This navigationalequation relatesthe

spatialand temporal partialderivativesofthe im-

age irradiancewith the distanceto variousobjects

withinthe field-of-viewand the vehiclemotion pa-

rameters. An expressionfor determiningthe spa-

tialand temporal sampling intervalsrequiredfor

satisfactoryperformance of the proposed scheme

isnext derived.Detailsof thisanalysisare given

in Section 2. In Section 3, an optimal approach

for estimating variouspartialderivativesis syn-

thesizedusing the Calculusof Variations9,1°.This

approach requiresthe solutionofa linear,second-

orderpartialdifferentialequation.Using the exist-

ing theory of such partialdifferentialequations11,

the solutionis obtained by assuming a product

decomposition. Spatialdiscretizationof thisso-

lutionthen produces feedback scheme for track-

ing the image irradianceas well as a systematic

approach forestimatingthe spatialand temporal

partialderivatives.

The performance of the proposed navigation

scheme isdemonstrated using a simulatedimage

sequence in Section4. Conclusionsand futurere-

searchdirectionsare indicatedin Section5.

2 The Navigation Scheme

Assuming that the image isrectangularwith the

major axisparallelto the horizontal,one may de-

finethe major axisas the Xp axisand the minor

axisas the Zp axis.The Yp axisisnormal to the

image plane. The originofthisimage plane coor-

dinatesystem may be at the centerofthe aperture

or at one of the comers. In the presentresearch,

the originischosen to be at the bottom lefthand

comer of the camera aperture. An image is de-

finedas an irradiancedistributionE(zl,,zp)in the

X v - Zp plane,with E being the irradiancespeci-

fiedon a grayscaleat a point(zv,zp)on the image.

To avoid the complicationsthat can arisewhile

consideringan invertedimage as isencounteredin

realcameras, the frontimage planeI_-willbe used

for image description.Itisassumed in the ensu-

ing analysisthat the image irradiancedistribution

iscontinuous except at finitenumber of regions.

Thus, forthe purposes of the presentanalysis,ef-

fectssuch as spatialimage discretizationand gray

scalequantizationare ignored.The image planeis

assumed to be locatedat a distance11,1_,13from

the originof the vehiclebody axis system, and

orientedwith respectto the body axis by three

rotations el,_2,e3. The vehicle body axis system

may be related to an earth fixed frame through

three Euler angles _b,0, _b and three translations

z0, y0, z0. The vehicle inertial navigation system is

assumed to produce estimates of z0, N0, Zo, _b, 0,
and their time derivatives. Let the location of

the various objects within the field-of-view with

respect to the earth fixed frame be z, y, z. Various

coordinate systems outlined in the foregoing are
illustrated in Figure 1.

Any point zp, zp corresponding to an object
in the image plane is related to its location with

respect to the earth-fixed frame through various

translations and rotations, together with the per-

spective projection. Considering pure transla-
tions, if one assumes that the camera is located

at the origin of the vehicle body coordinate sys-
tem and aligned with it, the relation between an

image point and its position with respect to the
earth fixed frame is given by

- (N-N0) (I)

fCz-z0)
- (N-N0) (2)

Here, f isthe imaging devicefocallength. As in

the researchof Horn and Schunck3'4's,the follow-

ing assumptions are next invoked :

1. The underlyingimage Lrradiancedistribution

issmooth in the sense that firstspatialpar-

tialderivativesexisteverywhere on the image,

except at finitenumber ofregions.

4



2. The perceived change in image irradiance at

each point in the image plane is entirely due

to the motion of the imaging device, and not

due to changes in the scene reflectance.

These assumptions lead to the expression

dE

d-T = 0 (3)

It is to be emphasized that higher order deriva-

tives of the irradiance may also be equated to zero.

This fact may be exploited to resolve navigational

anomalies in certain situations. However, the re-

sulting navigational scheme will be more complex.

This issue will not be pursued any further in this

paper. Next, expanding equation (3) yields

OE 8E. OE.

-_ + _, + _-;+_,= 0 (4)

Expression (4) is the Horn- Schunk optical flow

constraint equation. The apparent velocity of the

image _,, _p in this expression are called optical

flow components.

Next, differentiating the perspective projec-

tion equations (1), (2) with respect to time and

noting that the objects are fixed relative to the

earth fixed frame leads to the equations :

5, [_o - f_o]
- (v-_o) (5)

[z,_o- f_o]
_"- (y-yo) (_)

Substituting these relations in the optical flow con-

stralnt equation results in

Ot - (_,:/o - f:_o)

OE
/_)](_- yo)+_7;+(+_o- (_)

Expression (7) is the optical navigation equation.

If the spatial and temporal partial derivatives of

the image irradiance at any instant are known,

equation (7) may be used to solve for the depth

(Y- Y0) since the vehicle velocity components

_0, _0, _o and a particular pixel location in the im-

age plane z,, z, are known. It is important to note

that anomalies of various kinds can arise while ap-

plying this equation to real image sequences. For

instance, points in the image at which the spatial

irradiance gradients are discontinuous, the expres-

sion (7) may not have a solution. It is assumed
here that such points can be edited-out of the im-

age sequence using additional criteria.

Before proceeding to use equation (7), the dis-

crete nature of the imaging process needs to be

examined to determine the acceptable spatial and

temporal data rates required for obtaining a re-

alistic estimate of the scene depth. Clearly, the

trade-off between spatial and temporal sampling

intervals must be examined before synthesizing a

numerical algorithm. The simplest way to carry-

out this analysis is to replace the partial deriva-

tives in expression (7) by finite differences. This

yields

At - (x,_)o - f_o)

1
,/xE3, . _/_o)1*-Er;_t+y° . (_ - N0) (8)

Here AE: is the difference in the irradiance at a

point zp, z, at the begining and end of temporal

sampling, AE2 is the irradiance difference varying

z, while holding the time t and zp fixed, and AE3

is the irradiance difference varying zp while hold-

ing t and zp fixed. At, Azp, Az, are the spatial

and temporal sampling intervals. To ensure a nu-

merically well-conditioned system, the spatial and

temporal irradiance differences should be more or

less equal. Imposing this requirement in (8) leads
to :

,xt= :,_.p/x_p(7/- r/o)/N, (9)
where

[
N, = - [Azp(x,_0 - f_0)

+Azp(Zp_o - f_o)] (10)

Thus, if the required depth sensitivity, vehicle ve-

locity components, camera focal length, pixel lo-

cation and the spacing between pixels along the

Xp - Zp directions are known, desirable temporal

5



sampling interval can be computed using this ex-

pression. Since the sampling interval given by (0)

depends on the pixel location, different sampling

intervals will be specified at various parts of the

image. For instance, if the vehicle were travelling

along the Y direction in the earth fixed frame, the

sampling interval at the center of the image can

be very large, while the sampling interval at the

image periphery should be small. In this situa-

tion, the smallest sampling interval may be used

for the entire image to simplify calculations. It

is important to remember that the expression (9)

provides only an upper bound on the sampling in-

terval. Normally, a sampling interval between one

fifth to one tenth this value should be employed.

Once the spatial and temporal sampling in-

tervals are selected, the only remaining issue is the

method for computing partial derivatives. There

are several techniques available for computing par-
tial derivatives in the literature _3. Most of these

techniques suggest data smoothing prior to deriva-

tive computations. This is an essential step be-

cause derivative computation is an inherently noise

amplifying process. In the following, a technique

based on optimal control theory will be advanced

for the computation of spatial and temporal par-
tial derivatives.

scheme is to produce a relatively noise free esti-

mate of spatial and temporal partial derivatives.

To meet this objective, define the instantaneous

error between the model and the actual image as

r(_p,_p,t) = E(_p,_,t)- EM(_,_,t) (11)

It is desired to compute the partial derivatives of

the image model CgEM/C_t, OEM/Cgzp, C_EM/SZp us-

ing the measured irradiance and the error between

the image model and the actual image. The im-

age model will be continuously updated to closely

track the actual image. Then the partial deriva-

tives can be computed as

OgE M ogE Or

Ot Ot _t
(12)

8E_ 8E Or

Ozp O_p 8_p
(13)

OEM OE Or
- (14)

8zp 8zp 8z_

In order to develop estimates of the error par-

tial derivatives, consider the following optimiza-
tion problem

3 Estimation of Partial

Derivatives

The success of the proposed navigation depends on
estimating a consistent set of image irradiance par-

tial derivatives. The finite difference technique has

been the main approach employed by previous in-

vestigators while using the optical flow constraint

equation. While the simplicity of this approach

is attractive, it has no noise attenuating proper-

ties. This is a serious limitation while dealing with

real image sequences. An alternate approach for

partial derivative estimation based on the integral

least square error criterion will be developed in the

following.

Let the model of the image under considera-

tion be EM(zp, zp, t) and the actual image is given

by E(zp, zp, t). The objective of the estimation

/:'r'"r"'I,,÷o[ ]' r.( =.,=.,t ) . =., . =... _ LOzpJ

C_r 2

with given constants a,_,7. These constants can

be chosen to regulate the relative magnitudes of

the error partial derivatives. A large value would

tend to decrease the partial derivatives implying a

nearly uniform error distribution, while a smaller

weight would permit larger error variations in the

image plane. Additionally, these weights can be

used to correct for errors in the camera optics by

constraining the partial derivative magnitudes in

certain directions. In the integral (15), to is the

initial time, zpo and zp! define the left and right

edges of the image, and zpo and zp! are the bottom

and top edges of the image.

6



The problem defined in (15) is a least square

error estimation problem involving three indepen-

dent variables. The necessary condition for opti-
mality is given by 9

02r _02r 02r

,- - - =o (161

Equation (16)isa second orderlinearpartialdif-

ferentialequation and can be solvedforcertainset

ofboundary conditionszl.In thepresentsituation,

the image isrectangularand the errorisassumed

to decreasefrom the leftedge to the rightedge

and from bottom edge to the top edge. Itisdesir-

able that the trackingerrordecreasesmonotoni-

callyovertime. Additionally,the errorisrequired

to approach zeroforsufficientlylarget,zp,zp.

An approach forobtainingthe solutionto (16)

isto assume that the image errorhas a decompo-
sitionof the form

r= r1(t)r2( p)r3( ) (17)

The only justificationthat can be advanced for

using such a decomposition isthat the resulting

system of equationscan be solvedin closedform.

Substitutingthisdecomposition in the necessary

conditionfor optimality(16)permits one to con-

vertthe second order partialdifferentialequation

intothreesecond orderlinearordinary differential

equationsofthe form

d2rl C1
- --rl (18)

dr2 7

d2r2 C2
- -r2 (19)

dzp 2

(20)

Here, 01,C2, C3 are three constants which satisfy

the algebraic equation

1 - 01 - 02 - Os = 0 (20)

Monotonically decreasingerror in both spatialand

temporal directionsrequires

C1 > O, C2 > O, C3 > 0 (21)

In this case, a closed form solution for equation(16)
can be shown to be

r = Ke -[a(t-t°)+b(ffip-=r°)+c(zr-zP°)]

where

(22)

and K isan arbitraryconstant.Inexpression(23),

any two of the three constantsCI,C2, C3 can be

arbitrarilychosen,the thirdone being determined

by the constraintequation (20).

Differentiatingexpression (22), the spatial

and temporal partialderivativesof the error can

be computed as

Or
-- = -br (24)
0zp

Or
- -cr (25)

Ozp

Or
- -at (26)Ot

Thus, at any pixel in the image plane, the spatial

and temporal partial derivatives of the error can

be computed if the spatial and temporal error be-

tween the image model and the actual image are

known. Next, recognizing the fact that the image

is spatially discretized, the image model may be

updated at each pixel by integrating its temporal

partial derivative with appropriate initial condi-

tions. For instance, if an Euler integration scheme

were employed for the temporal partial derivative,

EM(ti+l) = EM(ti) + [Ot -{- a(E- EM) t=t,

In this expression, h is the integration step size,

normally chosen to be the image frame rate. Ex-

pression (27) is the image irradiance tracking equa-

tion which ensures that the image model is close

to the actual image. The actual image partial

derivatives OE / Ot, OE / Ozp, OE / Ozv are computed

using finite difference approximations. In image



sequences with relatively unchanging spatial irra-

diance gradients, these may be assumed zero, let-

ting the tracking process to compensate for this
Value.

The foregoing analysis may next be used to

synthesize a navigation scheme. At a particular

pixel in the image, the spatial and temporal par-

tial derivatives of the image can be computed us-

ing expressions (24)-(26). The temporal error is

then integrated with the initial condition on the

image model irradiance to obtain the image model

for the next time step. The temporal sampling

interval for this image irradiance tracking scheme

is chosen based on equation (9) and the values of

C1, 7. Various constants involved in the compu-

tations can be selected based on the quality of the

tracked image. A schematic block diagram of pro-

posed the navigation scheme is given in Figure 2.

4 Results and Discussions

The navigation algorithm was implemented in a

simulation employing a piece-wise planar scene.

The piece-wise planar scene is made up of joined

rectangular planes of equal height with a contin-
uous irradiance distribution across the surface. A

horizontal section through this simulated scene is

given in Figure 3. Corresponding irradiance dis-

tribution is given in Figure 4.

Figures 5 shows the imaging device trajectory,

and both the actual and estimated scene depths

at a pixel using the present navigation scheme.

The anomalies that arise at image irradiance gra-

dient discontinuities may be observed in this fig-
ure. These anomalies arise due to the fact that

the image model lags behind the actual image. As

a result, at points where the irradiance gradients

are discontinuous, the spatial and temporal deriva-

tives do not change simultaneously. While this lag

is not too serious in regions of small irradiance

change, it becomes increasingly inaccurate when-

ever the irradiance gradients undergo jumps.

To a degree, these anomalies can be corrected

by decreasing the temporal sampling interval. Al-

ternately, one may either use a higher-order irra-

diance tracking scheme or process the computed

range estimates through a low-pass filter. The lat-

ter approach was employed in the present study.

Figures 6 and 7 show the depth estimates obtained

using range filters with two different time con-

stants. This investigation reveals that the pro-

posed navigation scheme can be made to work sat-

isfactorily in simulated image sequences. Detailed

computations using real image sequences are cur-

rently under way.

5 Conclusions

An image-based passivenavigationscheme forro-

torcraftwas described.This scheme estimatesthe

scene depth by trackingthe image irradianceus-

ing a proportionalfeedbacklaw. Feasibilityofthis

approach was exploredusinga simulatedimage se-

quence.

The contributionsofthe presentresearchare

the following:

• Derivation of the image based navigational

equation combining the motion parameters

with the spatialand temporal irradiancegra-
dients.

Formulation of the range estimation problem

as a distributed parameter observer problem

with spatio-temporal irradiance distribution
as an input.

• Feedback solutionof thisproblem using the
Calculusof Variations.

This scheme iscurrentlybeing evaluatedus-

hug realimage sequences. Work on a navigation

scheme using higher-ordertracking schemes and

multipleimage sequencesisalsounderway.
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3. Ranging Based on Taylor Series Expansion

The ranging scheme described in the previous chapter suffers from a major disadvantage, viz.,

since the optical flow constraint equation relates temporal irradiance partial derivative with the spatial

irradiance partial derivatives and optical flow, it is not clear how it can be modified for stereo image

sequences. Furthermore, since the images are discrete, the concept of a temporal partial derivative is

artificial.

To alleviate these conceptual difficulties, multi-dimensional Taylor series approximation of the

correspondence hypothesis is next introduced. Given an image E(xp, yp), define the gradient vector

g and the Hessian matrix H as:

g = OE/Oyp ' H= 02E/OypOxv O_E/Oyv_

For a pair of images El, E2, the correspondence hypothesis may be stated as:

El(Xp, Yv) = E2(zp + Axp2, Yv + AYv2) (3.2)

E2(xp, yp) = El(Xp + Axpl, yp + Aypl)

Defining the disparity vector r,

r:[ xp]Ayp

the correspondence hypothesis can be expanded in a Taylor series as :

(3.3)

(3.4)

E1 - E2 = gT2r2 d- lrT2H2r2 Jr .....
2

(3.5)

1

E2 - El ---gTlrl + _rTiHlrl na ..... (3.6)

Such an expansion does not require any explicit reference to time, enabling the development of an

algorithm that is useful for both ster,_}avd motion image sequences. Additionally, the algorithm

performance can be improved by inch,din_ higher-order terms in the Taylor seriesapproximation. A

benefit of this formulation isthat itno longer needs the concept of optical flow,a concept that isoften

stated to be artificial in real imaging devices [4].

Next, the incremental perspective projection relationships at a pixel (xv, yp) can be found to be

Axp = (x_.-kzo- f Axo) (ypAzo - fAyo) (3.7)
z-zo-Az0 ' Ayp= z-z0-Az0

These incremental perspective projection relationships can be combined with either (3.5) or (3.6) to

yield depth. An alternate procedure is to assume that an object at (Xp, yp) in the first image is the

same as that observed at (xv, yp) in the second image. This assumption leads to rl = -r2. In this case,

adding and subtracting the two expansions and substituting for the incremental perspective projection

relationships yield the ranging and range error equations as

11



1 [ i)E1 OE2 { OEI i)E2 _r _ -fAyo]] z - Zo - AZoE,- E_ - _ [{-_xp÷-_xp }[xpAzo- fAxo]+ -_yp+ _yp Hyp_zo 1 + ...... (3.s)

OE, OE2 {OE1 OE2 ] 10 = { Oxp Oxp }[xpAZo - fAxo] + Oy v Oy v }[ypAZo - fAyo] z - Zo - Azo + ...... (3.9)

The first equation can be used for computing the range (z- z0) while the second equation is useful

for determining the error involved in the range calculation. If the computational resources permit, it

may be beneficial to use higher-order terms in this series. Note that these expressions have not been
previously obtained in the literature.

The spatial partial derivatives necessary for the computation of range can be obtained using finite

difference approximations. Further details on algorithm derivation and implementation is given in the

following paper, which was presented at 1990 AIAA Guidance, Navigation, and Control Conference.
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Image Based Range Determination

P. K. A. Menon*and B. Sridhar t
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Abstract

Flight vehicles operating at low altitudes such

as rotorcraft require range determination schemes

for locating the terrain and obstacles. The de-

velopment of a ranging scheme combining image

sequences from vehicle mounted passive imaging
sensors and the vehicle motion variables obtained

from an on-board inertial navigation system is

described. This approach can handle sequences

from more than one imaging device. Derivation of

the numerical algorithm and the performance re-

sults using a laboratory image sequence are given.

Other applications of the proposed approach in-

elude ranging schemes for autonomous planetary
rovers and telerobots.

Introduction

The development of position determination

schemes such as inertial navigation systems (INS)

and global positioning systems (GPS) has now
reached a point where flight vehicles could be lo-

cated within a few meters with respect to pre-

defined coordinate frames at any point on earth.

While the accuracy of these systems are impres-

sive, they cannot provide acceptable solutions to

the problem of relative position determination in a

changing or uncertain environment. This is due to

the fact that it is neither possible nor is it desirable

to construct apriori data bases incorporating every

detail of the operational environment. Use of con-

*Member AIAA, School of Aerospace Engineering, Geor-
gia Institute of technology, Atlanta. Mailing Address : FSN
Branch, M.S. 210-9, NASA Ames Research Center

tResearch Scientist, Member AIAA, FSN Branch, MS
210-9

ventional imaging Radar or the more recent scan-

ning Laser range finders are obvious solutions to

this problem. However, these devices require the

radiation of electromagnetic energy which may not

be desirable if the on-board power availability is

low or if covert missions are contemplated. These

factors have motivated the recent research on rang-

ing schemes using passive imaging devices such as

conventional or low light level television and infra-

red imaging sensors. Indeed, passive ranging has

emerged as a central issue in nap-of-the-earth he-

licopter flight guidance 1,2 and autonomous plane-

tary rover mission s'4's. The research reported in

this paper is primarily motivated by the current

interest in automating the nap-of-the-earth heli-

copter flight.

In the past, the research activity in the passive

ranging problem was largely driven by the robotics

discipline 6. Several approaches to the image based

range determination problem have been suggested
in recent literature 6-1°. Specifically, Reference 7

outlines the development of an image-based recur-
sire range determination scheme for nap-of-the-

earth helicopter flight. In that approach, various

features of interest in an image sequence such as

the edges or regions of high contrast were used

to determine the range to various objects within

the field-of-view. Techniques such as this may

be termed as feature-based ranging to distinguish

them from techniques that do not explicitly use

any features for range determination. Image-based

ranging algorithms that do not explicitly employ

features are termed field-based approaches.

The number of simultaneous imaging de-

vices employed defines another category of ranging

schemes. For example, the task of range estima-

tion using a temporal sequence of images from a

13



single imaging device is called the motion ranging

problem or the Uyclopian ranging problem after

the one eyed monster from Greek mythology. On

the other hand, schemes employing images from

two or more cameras simultaneously are called

Stereo ranging schemes.

In the robotics literature, ranging tasks ap-

pear to include the simultaneous determination

of vehicle motion parameters also °'°-lz. In the

case of a single imaging device, this process can

be shown to produce an under-determined system

and the solution can be obtained only by impos-

ing an additional constraint. In the approach de-

vdoped in the present work, the vehicle motion

parameters and the relative location of the imag-

ing devices are assumed to be known, perhaps

from the on-board inertial navigation system. The

ranging algorithm uses this data together with the

given image sequence to construct the distance to

various points within the field-of-view.

Images obtained from sensors mounted on a

moving vehicle will exhibit h-radiance changes at

each pixel. These changes depend on the relative

location of various objects, vehicle motion param-

eters, relative location of the imaging devices, the
scene surface reflectance and the location of illu-

mination. H the surface reflectance and the illumi-

nation are assumed to remain constant during the

imaging process, then the observed image irradi-

ance changes at each pixel are entirely due to the

relative location of various objects within the field-

of-view and vehicle motion parameters. Addition-

ally, ffall the objects within the field of view are as-

sumed fixed with respect to an inertial frame, then

the h-radiance change at each pixel location is in-

dicative of the range to these objects. In this case,

if the vehicle motion parameters and the imaging

device constants are known, it is possible to deter-

mine the relative location of various points within

the fieldof view. The ensuing analysiswilldeal

with monochromatic images. The data available

in such an image is a distributionof irradiance

specifiedas a functionof imaging deviceaperture

coordinates. Cartesianimage coordinatesystem

willbe used here sincemost imaging devicesused

currentlyare rectangular.

Allthe ranging algorithmsreportedin the llt-

eraturehave theirbasisin the so calledcorrespon-

dence hypothesis. According to thishypothesis,

ifitwere possibleto establishthe correspondence

between variousobjectsin a pairofimages and to

measure the displacementof these objectson the

image plane, then the perspectiveprojectionge-

ometry can be employed for computing the range

to these objects.The object displacementin the

image plane is sometimes termed as disparityin

the machine visionliterature.In feature-based

rangingtechniques,the disparityiscomputed only

between a few objectsof interestin the image

plane. On the other hand, in fieldbased tech-

niques,the disparityisdetermined at everypoint

in the image plane.

In the field-basedscheme discussedin this

paper, the correspondence hypothesisis approx-

imated using multi-dimensionalTaylor series.In

the specialcasewhere a temporal image sequence

is considered,the lowest degree correspondence

equationturnsout tobe the opticalflowconstraint

equation s'ls'14. In Reference 8, with the assump-

tion that the objects within the field-of-view were

fixed, this equation was combined with perspec-

tive projection geometry and the inertial naviga-

tion system data to derive a direct ranging equa-

tion. This ranging equation related the image irra-
diance spatial partial derivatives with the distance

to various objects within the field-of-view. An ex-

pression for determining the spatial sampling in-

tervals required for satisfactory performance of the

proposed scheme was also derived. The central re-

quirement in using this approach is the avaUabil-

ity of spatial and temporal partial derivatives of

the image irradiance. An optimal approach for

estimating various partial derivatives was synthe-

sized using the Calculus of Variations is. The per-

formance of the ranging scheme was then demon-

strated using a simulated image sequence.

A field-basedrange determination technique

was outlinedinReference8. The chiefaccomplish-

merittherewas the derivationofan OpticalRang-

ing Equation. This paper presentsan improved

versionof the ranging equation together with a

Range Error Equation. These expressionsareuse-

fulforcyclopianimage sequencesas wellas stereo

image sequences,and requireonly the spatialpar-
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tial derivatives of the image irradiance. The per-

formance of this ranging scheme is demonstrated

using a laboratory generated image sequence. Al-

though the algorithm is capable handling the vehi-

cle rotation and translation, the discussions in this

paper will be limited to the translational motion

case.

The Ranging Scheme

To avoid the complications that can arise

while considering an inverted image as is encoun-

tered in real imaging devices, the frontal image
plane 16 representation will be used for image de-

scription. Consider an image coordinate system as

shown in Figure 1. In this figure, the major axis

of the image plane is designated as the Xp axis

and the minor axis is labelled the Yp axis. The
Zp axis is normal to the image plane, aligned with

the axis of the lens. The origin of this image plane
coordinate system is located at the center of the

aperture. In this coordinate system, an image may

be defined as an irradiance distribution E(zp, yp)

in the Xp, Yp plane, with E being the irradiance

specified on a gray scale at a point zp, yj, on the

image plane. It is assumed in the ensuing analy-

sis that the image irradiance distribution is con-

tinuous everywhere in the image plane except at

fLuite number of regions. Thus, for the purposes

of the present analysis, effects such as spatial im-

age discretization and gray scale quantization are

ignored.
The lens center is assumed to be located at

the origin of the vehicle body axis system and the

lens axis is aligned along this coordinate system.

The vehicle body axis system may be related to

an inertial frame through yaw, pitch, roll rota-

tions ¢, 0, ¢ and three translations z0, Y0, z0. For

the present research, the vehicle attitudes are as-
sumed to be zero and the on-board inertial navi-

gation system is assumed to produce estimates of

z0,Y0, Z0. Let z,y,z be the location of an object

within the field-of-view, specified with respect to

the inertial frame. The coordinates corresponding

to this object on the image plane is zp, yp.

The point zp, yp corresponding to the object

in the image plane is related to its location with

respect to the inertial frame z,y, z through vari-

ous translations and rotations of the vehicle body

frame, together with the perspective projection.

Effectively, the perspective projection collapses a
three dimensional scene into a two dimensional

plane. The objective of any ranging scheme is to

invert this projection. The development that en-
ables such an inverse transformation is the corre-

spondence hypothesis.

The correspondence Hypothesis

The fact which allows the recovery of three dimen-

sional geometry from a two dimensional scene is
that if one has at least two views of a scene ob-

tained from different vantage points, then the dif-

ference between the location of the corresponding

objects in the two image planes is a measure of

the range. The apparent object displacement in

these two images is called disparity. The farther

the objects are with respect to the imaging de-
vice, the lesser would be the observed disparity.

For instance, objects that are very far away would

appear at nearly the same location in the two im-

ages, while close objects will exhibit a large dispar-

ity. If the disparity of the corresponding objects in

an image sequence could be measured, then equa-

tions for perspective projection could be used to

compute the scene depth.

Let El(zp,yp) be the image of a scene and

E2(zp, yp) be another view of the same scene from

a different vantage point. Assuming that the two

images contain all the objects of interest and that

to a large degree, the irradiance of the scene is

independent of the vantage points from which the

images were obtained, one may write the relations

= E2( p + a p2,y + Aye2) (1)

= + a pl,y + (2)

The equations (1), (2) state that an object at

the point zp, yp in the first image will appear at

the point zp + AZpl,yp + Aypl in the second im-

age. Similarly, an object located at the zp, yp
point in the second image will appear at the point

zp + _,zp2 , yp + _Yp2 in the first image. Here,
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Azpl, Aypl ,Azp2, Ayp2 arethe disparitiesbetween

the correspondingobjectsin the two images. The

depth informationisencoded in these disparities.

Itwillbe demonstrated subsequentlythatifthese

quantitiescan be determined,then the locationof

the objectswith respectto the inertialframe can

be computed using perspectiveprojectiongeome-

try.

Note that the correspondence hypothesis is

not validat every point on the two images. De-

pending upon the relative locations of the various

objects within the field of view and the relative loo

cations of the imaging devices, the correspondence

hypothesis will hold good only in certain regions

of the image. This is due to the various occlusions

that can arise from the angle of viewing and the

camera aperture dimensions. Note that if more

than two images of the same scene were available,

then itispossibleto write correspondenceequa-

tions such as (I) and (2) between every pair of
them.

The correpondence hypothesismay be satis-

fiedin variousways. In general,the task of satis-

fyingthe correspondenceleadsto an n x m search

for 2 × n × rn quantities, with n being the number

of pixels per column of the image and m being the
number of pixels per row of the image. That is,

at each pixel on the image, one searches for the

disparities along the two directions between two

images. Although additional information is avail-

able to limit the search domain, this process is

impractical and computations/ly ill conditioned.

A family of techniques called the feature

based methods 7 attempt to decrease the complex-

ity involved in satisfying the correspondence hy-
pothesis by first extracting the features of inter-

est in the image such as edges or regions of high

contrast and then establishing correspondence be-

tween them. This step reduces the correspondence

task by a significant amount. Pixel by pixel cor-

relation has also been employed for satisfying the

correspondence hypothesis I_.

In the present paper, an alternate approxi-

mation for satisfying the correspondence hypothe-

sis will be advanced. In this technique, the corre-

spondence equations(1)and (2)arefirstexpanded

using a Taylorsseries,to yield

cgzp

aE_(Zp, _p)

+ Oyp AYP2+ ......
(3)

0El (zp, yp)
E_(zp, yp) - E1 (Zp, yp) - 0zp Azpl

+ ...... (4)
0yp

Expressions (3) and (4) relate the irradiance

spatial partial derivatives to the h'radiance change

and the image disparities. The second order terms

in these expansions will typically involve the Hes-

sian matrix, while the third term can only be ex-

pressed as a tensor. Truncating thisseriespro-

duces various ordersof approximation. Clearly,

thelinearapproximation ispreferablesinceitleads

to a simple algorithm. Hence, in allthat follows,

the nonlinearterms in the Taylor seriesexpansion

willbe dropped.

In the special case where the disparities

Azp, Ayp arise from vehicle motion yielding appar-

ent image velocities u, v at a pixel in the image, i.e.

Asp = uAt, Ayp = vat, the equations (3) and (4)
with higher order terms dropped is the optics/tiow

constraint equation given by Horn and Schunk 13.

In this case, the velocity components u, v are called

the optical flow components. In the present pa-

per, this characterization is avoided because the

disparities AZpl, AYpl , AZp2 , Ayp2 Inay arise from
sources other than vehicle motion. Moreover, even

in such temporal image sequences, it has been sug-

gested that the optical flow concept is artificial is.

By adopting the point of view proposed in the fore-

going, equations (3) and (4) may be used not only

for temporal image sequences such as those en-

counteredincyclopianvisionproblems but alsofor

stereoimage sequences or images obtained from

multiple cameras.

In the next section, it will be demonstrated

that these expressions can be used together with

the geometry of perspective projection to obtain

a ranging equation. That analysiswillalso lead

to the derivationofan equation forcomputing the

range error.

16



The Optical Ranging Equation

Assuming that the lens center is located at the

origin of the vehicle body coordinate system and

aligned with it, the relation between an image

point zp, yp and the position of the correspond-

ing object with respect to the inertial frame z, y, z

is given by the perspective projection equations

• p = f(_-_0)/(z- _o) (s)

yp= f(_- _0)/(z- z0) (6)

Here, f is the imaging device focal length, and

z0, y0, z0 are the location of the vehicle with re-

spect to the inertial frame. Note that if the cam-

eras are offset from the origin of the vehicle body

axis system and not aligned with it, additional co-

ordinate transformations will have to be incorpo-

rated in the analysis.

Next consider a translation of the imaging de-

vice by a small distance Az0, Ayo, Azo in the pos-
itive direction. These variables could also be in-

terpreted as the displacement of the second imag-

ing device relative to the first as in stereo rang-

ing schemes. It is assumed that the location of

the object point z, y, z remains unchanged during

this motion. In this case, the object located at the

point z, y, z in the scene, and observed at the point

zp, yp in the previous image plane would now ap-

pear at the point zp + Azp, yp + Ay v on the image
plane, i. e

=_+ A_p = y(_ _ _o - A_o)lCz- _o- A_o) (7)

y, + Ay, = f(_ - N0- A_o)/(z - _o- rico) (8)

Subtracting (5), (6) from the expressions (7),
(8), results in

Azp = (zpAzo - fAxo)
z - z0 - Azo (9)

A_p = (_pAZo- fAyo)
z - Zo - AZo (10)

Note that if the direction of motion is changed, the

resulting displacement in the image plane can be

computed by changing the signs of the variables
AZo, Ayo, Azo.

Expressions (9) and (10) may next be used to

eliminate the variables Az_,l, AYpl, _,zp2,Ayp2 in

the correspondence equation pair (3), (4). At each

pixel location zp, yp this yields :

El-E2= {OE2_-_zp[zpAz0- fAzo]

OE_

+-_yp [ypAzo- f_,yo] } z - Zo - Azo
(11)

r cgE_- E1= - faro]
L

0El- _ 1 (12)[ypa o-Zayo] z- zo-
Adding and subtracting the expressions (11) and

(12), one may rewrite these two equations as

i r OE1 _E1 - E2 = 2 [{_pzp + }[zpAz0 - f_o]
p

. OE1

+ {_yp + _-_p }[Y, Azo- f A yo]]
z - z 0 - A Zo

(13)

1 r OE1 OE2

o= faro]

+{ OE1 OE2 }[gpAzo -- fAyo]] 1Oyp Oyp z - Zo - _Zo

(14)
The expression (13) is the Optical Ranging equa-

tion relating the irradiance difference at the same

pixel locations in the two images with the spa-

tial partial derivatives in the image planes and the

scene depth. This expression has not been previ-

ously reported.

The expression (14), on the other hand, pre-

dicts the degree of error in approximating the cor-

respondence equations using the first two terms of

the Taylor series expansion. This is a consequence

of the fact that if the image irradiance distribution

was indeed linear, the spatial partial derivatives
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will remain the same in both images E1 and E2.

Interestingly, the expression (14) also reveals that

for the same contrast level, image-based range es-

timation is more accurate for objects that are near.

Assuming that the irradiance differences (El "E2)

are nonzero, the expression (13) can be manipu-
lated to the form

[ 8E1 8E2

L ozp ozp

.OE1 0E2.. _ f_y0]lj 1+tO-_yp + -b-_yp&LYP"z°- 2(S,- E_)
(15)

Expression (15) can be used to compute the scene

depth z if the image irradiances El,E2, camera

parameters f, zp, yp, A=0, Ay0, Az0 and the spatial

partial derivatives 8E1/Ozp, i)E1/_)yp, OE2/Ozp,

8E2/Oyp were available.

Next, the z,y coordinates can be determined

using the inverse of the perspective projection

equations together with the optical ranging equa-
tion as follows.

zpAzo r 8E1

azp

c9E1 _ E2 Zp

r BE,= + + + }[,.azo- fa,0]

OE1 8 E2 A YP
+{_-_-yp+-_yp}[ypazo--f yo]] 2f(E 1 _ E,)

(1T)
In the preceding development, it is important

to note that anomalies of various kinds can arise

while applying the ranging equation to real image

sequences. This is because of the fact that _this

development assumes that the first partial deriva-

tives exist mad that at least locally, a linear ap-

proximation is valid for the image irradiance. Ad-

ditionally, in regions of near uniform irradiance, or

in regions where the spatial irradiance gradients

are discontinuous, the expressions (15)-(17) may

not have a solution. It is assumed here that such

points can be edited-out of the image sequence by

the use of an appropriate threshold.

The Computational Algorithm

The first step in the implementation of the rang-

ing algorithm is the computation of image spa-

tial partial derivatives. Several techniques are

available for computing partial derivatives in the

literature s. A prominent one amongst them is the

Fourier transform technique. Although fast algo-

rithms are available for their computation, the cal-

culations are far from routine. In Reference 8, a

partial derivative estimation scheme based on opti-

mal control theory was advanced. Since this tech-

nique has not been completely evaluated, a simple

central differencing scheme will be used to com-

pute the spatial partial derivatives in the present
research.

According to the central difference scheme, if

i is the plxel location along the zp direction and ]

the pixel location along the yp direction, with the

distance between pixels being 6z,6y, the spatial

partial derivatives are can be approximated by the
relations

OE + 1)- E(i - 1) (is)

0E E(j+I)-E(j-1)= (19)
@yp 26y

The partial derivative estimates given by the

expressions (18) and (19) are rather crude, and do

not exhibit any noise attenuating characteristics

at all. Research on more advanced partial deriva-

tive computation schemes are currently underway.

Once the spatial partial derivatives are computed,

equations (15), (16), (17) can be used to determine

the location of various objects within the field-of-
view.

A block diagram of the ranging algorithm is

shown in Figure 2. Two views of the candidate

scene are first used to compute the spatial deriva-

tives of the images. Next, the second image is sub-

tracted from the first to obtain irradiance changes

at each pixel. In the regions where the irradance
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change is close to zero, the scene depth is not com-

puted, since the ranging equation is not valid in

these regions. Instead, these points are assigned

the maximum scene depth. The spatial gradients

and the irradiance changes are then combined with

imaging device coordinates in the given inertial

frame z0, Y0, z0, Az0, Ay0, Az0 to obtain the z, y, z
coordinates.

When a new image becomes available, the first

image in the sequence is dropped and these cal-

culations are repeated. In some image sequences,
the estimated range can be inaccurate due to noise,

digitization errors or computational errors. In this

situation, one may collect several images of the

scene from the same vantage point. These images
may then be averaged to yield relatively noise-free

range estimates. An alternate approach would be

to apply a defocusing operator e to the image se-

quence beforecarryingout the range calculations.

Results and Discussions

Severallaboratoryimage sequenceswere used

fordemonstrating the performance ofthe ranging

algorithm. A pair ofimages from thislaboratory

image sequence isshown in Figures3 and 4. The

scene consistedof a dark wallwith a tablein the

foreground.Two computer monitors,an H shaped

objectand threepencilswere then placed on tMs

table. This image sequence was obtained using

a CCD (Charge Coupled Device) camera with a

field-of-viewofabout 45 degreesand a focallength

ofabout 6 nun. The gray scaleconsistedof256 hv-

elscorrespondingto 8 bitdigitizationofthe CCD

image. The CCD output was digitizedand pro-
cessedon a workstation.

Gray scalecoded spatialpartialderivatives

correspondingto the images in Figure 3 and 4 are

shown in Figures5 and 6. Note that theseare the

averageof the irradiancepartialderivativesin the

two images. In order to produce thisrepresenta-

tion,the gradientsare firstnormalized such that

they are in the range ±128. The resultis then

biasedby 128 such thatthe levelblack represents

the maximum negative gradient,while the white

levelrepresentsthe maximum positivegradient.

Figure 7 gives the irradiancedifferencebetween

two images shown in Figure 3 and 4. Once again,

the differencesare normalizedand scaledsuch that

the largestnegativevaluewould correspondto the

black leveland the largestpositivevalue would

correspond to the white level.Based on the im-

age digitizercharacteristics,in regionswhere the

irradiancedifferenceswere smallerthan 15 levels

ofgray,range computations were not carriedout.

Range calculationswere next carriedout us-

ing thisimage irradiancedata. Although a 3-D

representationof the resultwas desirable,no sat-

isfactorycomputer packages were available.In-

stead, the range data was once again coded in

terms of a gray scale. Figure 8 shows the result

of applying the ranging equation to the present
image sequence. In this figure, objects that are

at zero range are represented by the black color,

while the points that are far, or the points at which
range data is not available are indicated in white.

It may observed from this figure that the relative

location of various objects in the image sequence

are clearly recovered. The range computations ap-

pear sparse because of the threshold employed at

the input. Lowering this threshold will result in

a denser range field, but will also contribute to

several inaccurate range values.

To a degree, these anomalies can be corrected

by decreasing the image sampling interval. Al-

ternately, one may either use an improved partial

derivative estimation scheme or implement a rang-

ing algorithm based on higher-order correspon-

dence equation. The present investigation reveals

that the proposed ranging scheme works satisfac-

torily in laboratory image sequences. Work is cur-

rently underway to apply this technique to image

sequences obtained from a helicopter flight.

Conclusions

An image-based passive navigation scheme for
rotorcraft was described. This scheme estimates

the scene depth using irradiance differences and

spatial partial derivatives of an image sequence

together with imaging device parameters. Perfor-

mance of the ranging algorithm was demonstrated

using a laboratory image sequence.
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the
The contributions of the present research are

following:

Development of an image correspondence

equation valid for both cyclopian and stereo

ranging schemes.

Derivation of the Optical Ranging Equation

combining the vehicle and imaging device pa-
rameters with irradiance differences and the

spatial irradiance gradients.

Derivation of a Range Error Equation to aid

in evaluating the results generated by the

ranging equation.

• Demonstration of the performance of this al-

gorithm using a laboratory image sequence.

Improvements on this ranging algorithm is an

on-going research activity.
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Fig. 4. Second Image of the Laboratory Scene
Fig. 6. Gray Scale Coded Spatial Par-

tial Derivative of the Laboratory Scene in
the Vertical Direction

Fig. 5. Gray Scale Coded Spatial Par-
tial Derivative of the Laboratory Scene in

the Horizontal Direction

Fig. 7. Gray Scale Coded Irradiance

Difference Between the Two Images at Each
Pixel
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Fig. 8. Gray Scale Coded Range Es-
tlmate to Various Objects in the Field-of-
View
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4. A Partial Derivative Estimation Method and its use in

Vision-Based Ranging

In the previous chapter it was demonstrated that vision-based ranging can be accomplished if

the image irradiance spatial partial derivatives were known together with camera parameters. Due to

the noise encountered in real image sequences, it is desirable to carry out noise attenuation together

with partial derivative estimation. Techniques discussed in the literature for noise attenuated partial

derivative estimation are all frequency domain based [2]. Such an approach is inconvenient because

the complete image must be available before the partial derivatives can be determined.

An alternative approach permitting derivative computation as a part of image collection was next

pursued. The approach employs an approximation popular in the study of linear partial differential

equations arising in mechanical vibrations. The approximation involves the factoring of a function of

two variables as a product of two functions that vary as a function of one independent variable each.

This factorization reduces a partial differential equation into a set of ordinary differential equation.

Thus, the partial derivative estimation problem can be expressed as a set of total derivative estimation

problems for which solutions already exist. Additionally, by employing causal estimators, the partial

derivative computation can be carried out as the image data is being collected. Combining this partial

derivative estimation scheme with the ranging equation developed in Chapter 3 then results in a fast

method for vision-based ranging. A paper describing this research was presented at the 1991 SPIE

Symposium on Optical Engineering and Photonics in Aerospace Sensing, and is given in this chapter.
Up to this point, the vision-based ranging formulations assumed that the camera orientation

in the pair of images were the same. In practical situations, it is important to include both the

translational and rotational displacements of the imaging devices. Such an extension is nontrivial

since additional reference frames that may be translating and rotating with respect to the camera

frame need to be included in the analysis. A paper discussing these extensions was presented at the

1991 AIAA Guidance, Navigation, and Control Conference and is also included in this chapter.
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P. K. A. Menon, G. B. Chatterjitand B. Sridhar*

Mail Stop 210-9, NASA Ames Research Center

Moffett Field, CA 94035

ABSTRACT

Image-based ranging has emerged as a critical issue in the low altitude operation of flight vehicles

such as rotorcraft and planetary landers. These flight regimes require ranging systems for recovering the

geometry of the terrain and obstacles for use with guidance algorithms. The development of a ranging

equation combining image irradiance together with various order spatial partial derivatives and the vehicle

motion parameters is discussed. The ranging equation is in the form of a polynomial in scene depth. Two-

dimensional linear filters are then used to compute the coefficients of this polynomial to result in a fast

image-based ranging algorithm. Performance of the algorithm is demonstrated using laboratory images.

1 INTRODUCTION

The problem of determining the position of various obstacles in a changing or uncertain environment

is central to the development of guidance policies for autonomous vehicles. Imaging Radar and scanning
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Research Center
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Laserrangefindersare two direct solutioasto this problem. However,thesedevicesrequire the radia-

tion of electromagneticenergywhichmay not be desirableif the on-boardpoweravailability is low or if

covertmissionsarecontemplated.Recentresearchon rangingschemesusingpassiveimagingdevicessuch

asconventionalor low light level televisionandinfra-red imagingsensorsis motivatedby thesefactors.

Specifically,the passiverangingproblemis considereda critical issuein nap-of-the-earthhelicopterflight

guidance1'2and autonomousplanetaryrovermission3,4,5.

Most of the research activity in the image-based ranging problem is driven by the Robotics discipline 6.

Recently, several ranging approaches have been suggested in the literature 6-11. These techniques are based

on the intuitive notion that the images obtained from sensors mounted on a moving vehicle will exhibit

changes in irradiance at each pixel location as a function of time. These changes depend on the relative

location of various objects in the field-of-view, vehicle motion parameters, location of the imaging devices

with respect to the vehicle, the scene surface reflectance and the location of illumination. If the surface

reflectance and the illumination are assumed to remain constant during the imaging process, then the

observed image irradiance changes at each pixel can be related to the location of various objects within

the field-of-view and the camera-vehicle param(.ters. Additionally, if all the objects within the field of view

are assumed fixed with respect to an inertial frame, the irradiance change at each pixel location can be

related to the range to these objects. Ill this case. if the vehicle motion parameters and the imaging device

constants are known, the relative locatioll of various points within the field of view can be determined.

The ensuing analysis will deal with monochromatic images. A Cartesian image coordinate system will be

used here since most imaging devices used currently are rectangular.

In the Robotics literature, ranging tasks appear to include the simultaneous determination of vehicle

motion parameters alSO 6'9'12. If a single imaging device is used, this process produces an under-determined
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systemof equations and the solution Call be obtained only by imposing an additional constraint. In the

present work, the vehicle motion parameters and the relative location of the imaging devices are assumed

to be known from an inertial navigation system on-board the vehicle. The ranging scheme uses this data

together with the given image sequence to construct the distance to various points within the field-of-view.

Image-based ranging schemes use the correspondence between various objects in an image sequence

to determine the disparities. These disparities can be used together with perspective projection equations

to obtain the range. In this paper, the correspondence problem is first satisfied using a multi-dimensional

Taylor series involving disparities between the two images. Next, the disparities are eliminated in favor of

the vehicle-camera motion parameters and scene depth using the perspective projection relationships. This

process yields a polynomial for the scene depth at every pixel location. This equation is referred to as the

Optical Ranging Polynomial in the present work. This equation may be thought of as the generalization of

the optical ranging equation discussed in Reference 11. The coefficients of the optical ranging polynomial

depend on the irradiance difference between the two images and various order irradiance spatial partial

derivatives. A system of two-dimensional linear filters are next synthesized to compute the required partial

derivatives. Due to the simplicity in implementing these filters, the partial derivatives can be computed

at a high data rate, often faster than the video frame rates. The result is a fast image-based ranging

algorithm. The performance of the ranging scheme is demonstrated using laboratory images.

2 THE RANGING SCHEME

To maintain consistency with the existing literature, the frontal image plane 13 representation will be

used for image description. The various coordinate systems employed in this paper are illustrated in Figure

1. This figure shows the image coordinate system together with the vehicle body coordinate system and

the inertial coordinate system. The origin of the image plane coordinate system is located at the center of
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the aperture.An imageis definedasan irradiancedistribution E(xp, yp) in this coordinate system, with

E being the irradiance specified ill a gray scale at a point xp, yp on the image plane. The ensuing analysis

assumes that the image irradiance distribution is continuous everywhere in the image plane except at fi-

nite number of regions. This is a reasonable assumption because the underlying imaging process involves

integration, a process that smoothens out the discontinuities. For the purposes of the present analysis,

errors arising out of spatial image discretization and gray scale quantization will be ignored.

Onl_t

Fronlal Imaoe Plane _

..................(" /

•

Body Frame and Image Frame /

l
Y

Figure 1: The Coordinate System

To simplify the development, tile lens center is assumed to be located at the origin of the vehicle body

axis system and the lens axis is aligned along this coordinate system. Moreover, the analysis will assume

only pure translational motions for the camera. Although the procedure to include the rotational motion

is rather direct, it will be developed in a more complete detail elsewhere. The on-board inertial navigation

system is assumed to produce accurate estimates of camera-vehicle displacement x0, Y0, z0. In the case of

stereo camera arrangement, it is assumed that the relative displacement between the two cameras is also

accurately known. Let x, y,z be the location of an object within the field-of-view, specified with respect
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to the inertial frame. The coordinates corresponding to this object on the image plane is xv, yv. If the

camera moves to a new position Xo + AXo, yo + Ayo, Zo + Azo the object point will move to a new position

xp + Axe, yp + Ayp in the image plane. The apparent displacement in the image plane caused by the cam-

era motion Axp, Ayp are called the disparity. The disparity depends on the range to the object and the

camera parameters. The objective of the ranging scheme is to use this information to determine the object

location x, y, z. If the disparity of a corresponding object in an image pair is known, then the equations

for perspective projection can be used to compute the scene depth. While several distinct approaches are

available for disparity determination 6,7, the present work will employ a multi-dimensional Taylor series

expansion as the basis for establishing correspondence.

Let El(xp, yp) and E2(xp,yp) be a pair of images of a scene obtained from two different different

vantage points. Assuming that these two images contain all the objects of interest and that to a large

degree, the perceived irradiance of the scene is independent of the camera location, the correspondence

hypothesis can be expressed as

El(Xp, yp) = E2(xp q- Axp, yp q- Ayp) (:)

E:(xp, yp) = El(xp - Axp, yp - Ayp) (2)

Here, Axp, Ayp are the disparities between the corresponding objects in the two images. The depth infor-

mation is encoded in these disparities.

Note that the correspondence hypothesis expressed in (1) and (2) are valid only in a limited sense,

and not for all points in the two images. This is due to the various occlusions that can arise from the angle

of viewing and the camera aperture dimensions. Note that equations such as (1), (2) can be written for
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any number of images, provided the occluding objects are edited out.

In the present research, the expressions (1) and (2) will be expanded in a Taylor series to enable the

computation of the disparities. Such an expansion treats disparities as perturbations about specified pixel

locations. The error involved in such an approximation depends on the number of terms included. Define

the disparity vector r, the irradiance gradient vector g, and the irradiance Hessian matrix H as

r ,g=
OE/Ozp

OE/Oyp

,H=
02 E / Oxp 2 02 E / OxpOyp

02 E / OypOzp 02 E / Oyp2

Equations (1) and (2) can now be expanded using a multi-dimensional Taylor's series to yield

(3)

Similarly,

E1 - E2 = g2r d- lrTH2r-t- .....
z (4)

E2 - E1 = -glr d- lrTHlr -- •.... (5)
2

Expressions (3) and (4) relate the irradiance spatial partial derivatives to the irradiance change and the

image disparities. It is awkward to write the third term in this series using the vector-matrix notation

because it contains a Tensor. In all that follows, a lower case bold face letter will denote a vector, while

an upper case bold face letter will be used to denote a matrix.

In the special case where the disparities Axp, Ayp arise from vehicle motion yielding apparent image

velocities u, v at a pixel in the image, i.e. Axp = uAt, Ayp = vAt, the equations (4) and (5) with just

the first term on the right hand side is the optical flow constraint equation TM. In this case, the apparent

image velocity components u, v are called the optical flow velocities. This characterization is avoided here
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becausethe disparitiesAXp, Ayp may arise from other sources also, stereo camera arrangement being an

example. By adopting the point of view proposed in the foregoing, equations (3) and (4) may be used not

only for temporal image sequences such as those encountered in Cyclopean vision problems, but also for

stereo image sequences or images obtained fi'om multiple cameras.

Adding and subtracting the expressions (4) and (5) results in

Ex - E2 = l [gl + g2]r + lrT[H2 - H1]r + ....... (6)

0= [g2-gl]r+lrT[H,+H2]r+ ....... (7)

In the following, it will be demonstrated that these expressions can be used together with the geometry

of perspective projection to obtain a ranging equation. The analysis will also lead to the derivation of an

equation for computing the range error.

The disparity vector r from equations (6) and (7) can next be eliminated in favor of other known

quantities and the scene depth as follows. Assuming that the lens center is located at the origin of the

vehicle body coordinate system and aligned with it, and that the camera and the vehicle are permitted

to have only translational motions, the relationship between an image point Xp, yp and the position of

the corresponding object with respect to the inertial frame x, y, z are given by the perspective projection

equations

xp = f(x - xo)/(z - zo),up= f(u - yo)/(z - zo) (8)

Here, f is the imaging device focal length, and x0, Y0, z0 coordinates of the vehicle location with respect to

the inertial frame. It is assumed that the camera focal length and the components of the vehicle position
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vectorXo, Yo, z0 are known.

Next consider a translation of the camera/vehicle by a small distance Ax0, Ay0, Az0 in a positive

sense. Note that Axo, Ayo, Az0 may also be interpreted as the displacement of the second imaging device

relative to the first as in a stereo arrangement. It is assumed that the location of the object point z, y, z

remains unchanged during this motion. In this case, the object located at the point x, y, z in the scene,

and observed at the pixel location Xp,yp in the previous image plane would now appear at the point

xp + Azp, yp + Ayp on the image plane. Using this fact, the disparity vector can be obtained as

r=6
(Xp_Zo - f Axo)

(ypAzo - f Ayo)

1

, 6= (rZ-Zo-z.x)^Zo x (9)

Note that the disparity vector is linear in the inverse of the scene depth. For notational convenience,

the inverse of the scene depth at a pixel location is denoted by the symbol 6. The quantities within the

parenthesis in the disparity vector can be computed if the vehicle-camera displacement, pixel location and

the camera focal length are known. Substituting for r from (9) in the Taylor series approximation (6), (7)

yields two polynomials

El - E2 = aa _ + a2 62 + a3 _3 qt. a4 _4 -4- ........ (10)

0 = bl 6 + b2 62 + b3 63 + b4 (_4 + ........ (11)

The polynomial coefficient al depends on the vehicle motion parameters and the first spatial partial

derivatives of the images. The coefficient a2 depends on the vehicle motion parameters and the second

spatial partial derivatives of the two images and so on. The coefficients of the second polynomial, on the

other hand, depends upon the differences in various order spatial partial derivatives in the two images. The
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secondequationmaybe thoughtof asa truncationerrorequationfor the first polynomial. For example,

if all but the first term is droppedin right handsideof equation(10), then the underlyingassumption

is that the imageirradiancevarieslinearlyin the spatialdirection. In this case,the coefficientbl in the

polynomial (11) is proportional to the difference between the spatial partial derivatives in the two images.

If the two partial derivatives were exactly equal, then the error in range calculation is also zero. On the

other hand, if they are not equal, the first term in polynomial (11) will not be zero. The magnitude of this

term is then proportional to the error in using the first-order Taylor series approximation for satisfying the

correspondence hypothesis.

The solution to the polynomial (10) yields the inverse of the scene depth _ at a particular pixel loca-

tion. These equations have not been previously derived in the literature. In all that follows, the polynomial

(10) will be referred to as the Optical Ranging Polynomial and the polynomial (11) will be termed as the

Optical Ranging Error Polynomial. The optical ranging polynomial and the ranging error polynomial can

be formulated at every pixel location in an image. Various numerical techniques can then be used to obtain

at every pixel location in the image. This can done in closed-form for up to fourth degree approximation.

If it is desired to use ranging polynomial of fifth degree or more, one of the several well known polynomial

root finders can be used to obtain the solution.

Once the inverse of the scene depth _ at a particular pixel is computed using the optical ranging

polynomial, the inertial coordinates of the corresponding object can be found as

Xp. l
x = +  zo)+ xo, y = YPcI 1f,_ +Azo)+Y0, z= _+zo+Azo (12)

It is important to observe that various kinds of anomalies can arise while using the ranging polyno-

mial. For example, the assumption that various order partial derivatives exist everywhere in the image
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is sometimesviolated. Additionally, ill regionsof nearuniformirradiance,or in regionswherethe spatial

irradiancegradientsarediscontinuous,the polynomials(10)-(11)maynot havea solution. To a certain

degree,it is possibleto eliminatesuchregionsby usinganappropriatethreshold.

3 The Computational Algorithm

The first step in the implementation of the optical ranging polynomial is the computation of the

polynomial coefficients al,a2, .... an and bl,b2,....bn. These coefficients depend on the various order spa-

tial partial derivatives of the two images and the camera-vehicle motion parameters. In this work, the

camera-vehicle parameters are assumed to be known from on-board inertial navigation system and geo-

metric measurements. The remaining task is the estimation of image irradiance partial derivatives.

Several numerical techniques are available in the literature for the computation of partial derivatives 6.

These range from simple techniques such as central difference schemes to very sophisticated techniques

that adapt to reject noise and unwanted frequency components in the input signal. It is well known in the

signal processing literature that derivative estimation is a noise amplifying process. Given an irradiance

distribution E(xp, yp), the objective of the partial derivative estimators are to provide sufficiently noise

free estimates of i)E/Oxp, (_OE/(_Oyp,(.O_E/Oxp _, _E/Oyp 2, 02E/OxpOyp, ..... Most of the approaches in the

signal processing literature formulate the partial derivative estimation problem in the frequency domain.

This makes them unattractive in conjunction with conventional TV cameras because the image is formed

using a sequential scanning process.

In the following, a partial derivative estimator will be formulated directly in the spatial domain. Unlike

the frequency domain estimators discussed in the image processing literature, the present formulation

employs causal estimators 6 to improve speed. To a certain extent, this process compromises accuracy.
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However,numericalexperimentshaveshownthat the errormagnitudecanbe reducedby an appropriate

selectionof the estimatorparameters.Ia orderto simplify the development,it is assumedthat the image

irradiancedistribution E(xp, Yv) can be factored into a product of two functions of one variable each.

This allows the evaluation of two dimensional integrals as products of one dimensional integrals. In the

following, estimated quantities will be denoted by a "" ". Thus,

E: el(Xp) e2(Yp) , -E= el(Xp) 62(Yp) (13)

The partial derivatives of the estimated picture/_can be written in terms of total derivatives of itsfactors

61, 62 as:

0/_ d61 cOG d_2 02E d261 02/_ d262 02/_ d61 d62

Oxp -62 dxp' Oyp -61 dyp' Oxp2 -e2 dxp2, Oyp2 -61 dyp 2' OXpOyp - dxp dyp' .... (14)

The estimation problem can next be formulated as two, coupled, one-dimensional problems. Addi-

tionally, it is possible to formulate the estimation problem either as a serial process or as a parallel process.

In the former case, the processing is carried out first along the Xp direction and then along the yp. In the

latter case, the processing occurs simultaneously along both xp and yp directions. A serial implementation

will be illustrated here since it is consistent with the image forming process. Let p be the n dimensional

estimator state vector. The estimator dimension n is selected based on the order of partial derivatives

to be estimated and the desired smoothness requirement. For example, if it is desired to estimate the

first and second order partial derivatives with the requirement that the second order partial derivatives be

smooth, n has be at least 3. Next, define a linear dynamic process evolving along the xp direction with

the measured picture irradiance E as the input.

d
= A p + B E (15)

,_Cp
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ThematricesA and B canbe chosento obtain the desiredtransmissiongainand bandwidthfor the xp

spatial frequencies. A is an n × n dimensional matrix, while B is an n × 1 vector. Note that E is a scalar

function of xp, yp. The output equation for this linear dynamic process can be defined to yield

del d2el ...... ]T (16)
r= C p + D E,r = e2[_l dzp dxp 2

The matrices C, D should be chosen depending on the linear dynamic system (15) dimension and on the

desired orders of the partial derivatives.

In order to take care of the yp direction, construct a linear dynamic process in this direction with the

first element of the vector r, viz., _1e2 as the input, i. e.,

d

dyp q = M q + N _1e2 (17)

q is an m vector, M is an m × m matrix while N is an m × 1 vector. As in the xp direction, the dimension of

this linear dynamic process is chosen based on the desired partial derivatives and smoothness requirements.

Once again, the matrices M and N can be chosen to obtain the desired gain and bandwidth for the yp

spatial frequency components. The output equation of this dynamic process can be chosen as

s = K q + Lele2, s -- el[e2 de2 d2e2 ...... ]T (18)
dyp dyp 2

The output matrices K, L can be chosen in the same manner as the output matrices C, D in equation

(16). With the availabilty of the vectors r, s, the estimated picture and its various partial derivatives can

be computed. The various elements of these vectors will be denoted by lower case letters in the following.

It can be verified that

0E _ /_lr_ O/_ (92/_ _ Elf3 02/_ 02L: = r2s2 (19)
JE = Sl, Ox_ rl ' cgyp - s2, Ozp_ rl ' cgyp2 - s3, cOx_c_yp rl
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In equation(19), it is iml)ortallt to el/surethat rl does not become zero at any point in the image.

This can be accomplished by addiJlg a collstant bias to the input image and subtracting this bias at the

output. Note that such an operation does not alter the partial derivative estimates.

It can be seen from the foregoing development that the image irradiance partial derivatives can be

estimated as the image is being formed through the scanning process. As a result, by the time the image

is complete, various coefficients of the ranging polynomial are available. Moreover, if a low-order ranging

polynomial is used in the computations, the range calculations can also be completed as the image is being

formed.

Various steps involved in these calculations are illustrated in the block diagram given in Figure 2.

This figure assumes that an image l)aiv is available at the beginning of the computations. The linear

filters provide the estimated image together with a consistent set of partial derivatives. Next, the filtered

second image is subtracted from the first to obtain irradiance changes at each pixel. The scene depth is

not computed in regions of near-zero irradiance change, since the ranging equation is not valid in these

regions. Instead, these points are assigned a pre-defined maximum scene depth. The spatial gradients

and the irradiance changes are then combined with imaging device coordinates in the given inertial frame

x0, Y0, z0, Ax0, Ay0, Az0 to obtain the x, y, z coordinates corresponding to every pixel location.

4 RESULTS AND DISCUSSIONS

A laboratory image pair is used to demonstrate the feasibility and performance of the ranging algo-

rithm discussed in the previous section. This laboratory image pair is shown in Figures 3. The scene

consisted of a dark wall in the background with a table in the foreground. A soda can together with two
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x - Filter _'_
Image I

y - Filter

Image 2

x - Filter

y - Filter

Ranging

Polynomial

Range Error

Polynomial

Figure 2: Vision-Based Ranging Scheme

pencils were then arranged on this table. A wire is strung across the two pencils to explore the feasibility

of detecting obstacles with small dimensions. These images were obtained using a CCD (Charge Coupled

Device) camera with a field-of-view of about 45 degrees and a focal length of about 6 mm. The images

consisted of 512 x 512 pixel matrix with the scene irradiance being discretized in 256 levels of gray. The

stereo base line, or the lateral displacement Ax0 was 0.1 inches. The ranging algorithm was implemented

on a SUN workstation in C.

Although ranging algorithms of various order have been implemented, the results using a first degree

ranging polynomial, together with a ilrst-order partial derivative estimator will be presented here. The

partial derivative estimators employed for this example are of the form

/i = -0.5 p + 0.5 E,
e2el

d_
e2_

1

-0.5

p+
0

E

0.5

(20)
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Figure 3: Left and Right Laboratory Images

e_e2 1 0
= -0.5 p + 0.5 _e_, q + _ea (21)

e_ -0.5 0.5

Various partial derivative estimates were computed using the expressions in (19). These values were the,_

substituted in the first degree ranging polynomial to obtain the range estimates. Table 1 shows a compari-

son between computed and actual ranges to various objects in this scene. This table also gives the number

of points at which the ranges were computed and the standard deviation.

It should be noted that the distributio_ of computed ranges corresponding to a particular object is

not symmetric about the mean values given in ]'able 1. As a result, the standard deviation shown in the

parenthesis does not truly reflect the error in estimates. A 3-D representation of the range data is shown

in Figure 4. From this figure, it can be observed that the range estimates are more consistent in regions of

higher contrast than in regions of low contrast.
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Table 1: Comparison Between Actual P_nge (inches) and the Estimated Range (inches)

Object Actual Range Estimated Range (Std. Dev.) No. of Points

Left Pencil

Right Pencil

Tape-on-wall

Soda can

Bracket

30.0

26.0

60.0

28.5

19.0

26.99 (7.48)

23.24 (6.33)

55.94 (8.84)

27.01 (7.59)

19.71 (7.23)

975

2510

85O

1738

1070

_ x_'" .o t,: _'_

Figure 4: 3-D Representation of Computed Ranges
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It is important to stressherethat therangeestimatesarestronglyinfluencedby thefilter bandwidth.

Higherbandwidthleadsto partial derivativeestimatesthat havea higherdegreeof fidelity. On the other

hand,it alsoleadsto a highernoisecontentat the output, often leadingto inaccuraterangeestimates.

Thus,as in anyother signalprocessingapplication,selectionof estimatorparametersis largelyanart if

thenoisecharacteristicsareunknown.

5 CONCLUSIONS

This paper described the development and implementation of a fast technique for image-based passive

ranging. This research was motivated by the need to automate the helicopter nap-of-the-earth flight regime.

An optical ranging polynomial relating the scene depth with camera-vehicle parameters and various orders

of image irradiance partial derivatives was derived. Another polynomial that predicts the truncation error

involved in range computations was also developed. In order to enable rapid calculation of these polynomial

coefficients, a partial derivative estimation method using causal linear filters was developed. Performance

of the ranging algorithm was then illustrated using a laboratory image pair.

Current research focuses on improving the accuracy of this ranging algorithm and on the inclusion of

additional camera-vehicle motion parameters.
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Passive Obstacle Location for Rotorcraft Guidance

P. K. A. Menon, G. B. Chatterji rand B. Sridhar _
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Abstract

Nap-of-the-earth flight mode is extremely demand-
ing on the rotorcraft pilots. This fact has motivated the

research in automating various components of low alti-

tude rotorcraft flight operations. Concurrent with the

development of guidance laws, efforts are underway to

develop systems for locating the terrain and the ob-

stacles using inputs from passive electro-optical sensors

such as TV cameras and infra-red imagers. A passive

obstacle location algorithm that uses image sequences

from cameras undergoing translational and rotational

motion is developed. The algorithm is in a general form

and can operate in multi-camera imaging environments.
Performance results using an image sequence from an

airborne camera are given.

Introduction

Nap-of-the-earth (NOE) flight mode is one in
which a rotorcraft flies close to the terrain, with all alti-

tude clearance of less than about 50 feet, while avoiding

various obstacles on the way under all weather condi-

tions. The NOE flight regime is extremely taxing on

the rotorcraft pilots who have to carry out many other

duties in addition to flying the aircraft. This factor has

motivated the research in automating the NOE flight
regime 1-s.

The task of locating various obstacles within the
field-of-view has emerged as the central problem ill the

development of pilot aids for nap-of-the-earth flight.

Use of active sensors such as Radar or la._,r rangers

are not desirable due to their significant power require-

ments and the difficulty in conducting covert missions
with such devices on-board. This issue has driven the

research in developing passive obstacle location schemes

using conventional TV and infra-red imaging devices.

Several approaches to the image-based obstacle

location problem have emerged in recent years 4-9.

*Member AIAA, School of Aerospace Engineering, Georgia
Institute of technology, Atlanta. Mailing Address : FSN Branch,
M.S. 210-9, NASA Ames Research Center

tMember AIAA, Member of the Professional Staff, Sterling
Software, Inc., 1121 San Antonio Road, Paio Alto, CA 94303

tResearch Scientist, Member AIAA, FSN Branch, M.S. 210-9.

Specifically, Reference 4 has discussed the development
of a recursive obstacle location scheme for low altitude

helicopter flight. In that approach, various features of

interest in an image sequence such as regions of high
contrast are used to determine the location of various

objects within the field-of-view. Techniques such as

these are termed as feature-based to distinguish them

from techniques that do not explicitly use any object

features for determining their location. Image-based

obstacle location algorithms that do not explicitly em-
ploy features are termed field-based approaches. Vari-

ous aspects of a field-based algorithm was discussed in
References 7 - 9.

In the present work, the field-based obstacle loca-
tion scheme discussed in References 7 - 9 is extended to

permit the inclusion of rotational and translational mo-

tion of the imaging devices and the rotorcraft. While

such an extension is non-trivial, this aspect needs to be

addressed before an operational system can be synthe-
sized.

Vision-Based Obstacle Location

Passive obstacle location methods using electro-
optical sensors have their basis in the fact that the im-

ages obtained from sensors mounted on a moving vehi-

cle will exhibit irradiance changes at each pixel. Rela-

tive location of various objects, vehicle motion parame-

ters, relative location of the imaging devices, the scene
surface reflectance, the location of illumination sources

all influence this irradiance change. If the surface re-
flectance and the illumination are assumed to remain

constant during the imaging process, then the observed

image irradiance changes at each pixel are entirely due
to the relative location of various objects within the

field-of-view and the vehicle motion parameters. Addi-

tionally, if all the objects within the field of view are

assumed fixed with respect to an inertial frame, then

the irradiance change at each pixel location can be di-

rectly related to the location of these objects. In this

case, if the vehicle motion parameters and the imaging
device constants are known, it is possible to determine

the location of various points within the field of view.

Image-based obstacle location algorithms operate

on the basis of the correspondence hypothesis. The

central idea here is to establish the correspondence be-
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tweenvariousobjectsinapairofimagesandtomeasure
thedisplacement of these objects on the image plane.

The measured displacement or the disparity can then

be employed together with the perspective projection

geometry for computing the location of various objects
within the field-of-view.

In order further to crystallize these ideas, consider

the various coordinate systems illustrated in Figure 1.

The first of these is the image plane coordinate system

image Pi_e

Xp

Xb

b Yb

Figure 1: Coordinate System

with the major axis of the image plane being desig-

nated as the Xp axis and the minor axis being labelled

the Yp axis. The origin of this image plane coordinate
system is located at the center of the aperture. In this

coordinate system, an image may be defined as an it-

radiance distribution E(xp,yp), with E being the ir-

radiance specified on a gray scale at a point xp, yp on
the image plane. Next consider the camera coordinate

system Xc, Yc, Zc with the Xc axis passing through
the origin of the image-plane coordinate system, and

the axes Yc, Zc being parallel to the image plane co-

ordinate system. The origin of the camera coordinate

system is at the lens center, located one focal length f

behind the image plane Xp, Yp. Such an arrangement

of the camera coordinate system is routinely employed

in image processing work to avoid having to deal with
inverted images.

The origin of the camera coordinate system is as-

sumed to be located at a point 11, 12, 13 with respect to
the body axis, and oriented by three angles el, e2, ¢3

about the Zc, Yc and Xc axes respectively. The vehicle

body axis system is defined using the standard flight

dynamics convention, viz., the Xb axis pointing along

the nose of the rotorcraft, Yb axis along the starboard

direction, and the Zb axis completing the right handed
triad. The body axis system may be related to an in-

ertial frame X, Y, Z through yaw, pitch, roll Euler

angles ¢, 6, ¢ and the three translational components
z,,, y,,, zv. The definition of the inertial frame follows

the standard flight dynamics convention with the X-

axis pointing towards north, the Y-axis pointing to-
wards east and the Z-axis pointed in the direction of

local gravity vector.

A point xp, yp corresponding to the object in the
image plane is related to its location with respect to

the inertial frame z,y,z through various translations

and rotations of the vehicle body frame and the camera

frame, together with the perspective projection.

Let El(xp, yp) and E2(zp,yp) be two different
views of a sample scene. Assuming that these two im-

ages contain all the objects of interest and that to a

large degree, the perceived irradiance of the scene has

remained invariant during the imaging process, the cor-

respondence hypothesis can be expressed as

EI(x v, yp) = E2(xp + Axp, yp + Ayp) (1)

E2(xp, Yv) = El(xp - Axp, yp - Ayv) (2)

Here, Axp, Ayp are the disparities between the corre-
sponding points in the two images defined at every point
on the image plane.

It is important to stress that the correspondence

hypothesis expressed in (1) and (2) should be inter-
preted in a limited sense because it does not account

for various occlusions that can arise during the imaging

process. These occlusions arise due to the the viewing
angle and the camera aperture dimensions. Note that

equations such as (1) and (2) can be written for any

number of images, provided that the objects of interest

appear in all the images. Various methods for satisfy-

ing the correspondence hypothesis have been discussed

in the literature 4-1°. In the present research, the cor-

respondence hypothesis will be approximated by first

expanding the expressions (1) and (2) in a Taylor se-

ries and then truncating them based on the acceptable

computational complexity. Such an expansion treats

disparities Azp, Ayp as perturbations about the spec-
ified pixel locations. Clearly, the error in such an ap-

proximation depends on the number of terms included

in the Taylor series.

In all that follows, a bold face lower case letter

will denote a vector, while a bold face upper case letter

will denote a matrix. A superscript T will be used to

denote the vector-matrix transpose operation. Define

the disparity vector d, the irradiance gradient vector g,
and the irradiance Hessian matrix H as

Ayp ' g = c3E/Oyp '
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H = [ c9UE/cOxP2 02EIcgxPOYPc92E/OypOxp c92E/Oyp_ ] (3)

Equations (1) and (2) can now be expanded using

a two-dimensional Taylor series to yield

E1 -- E: = g2d + ldTH_d + ..... (4)
L

Similarly,

|

E2 - E1 = -gld + _dTI'Ild - •.... (5)

Expressions (4) and (5) relate the irradiance spatial
partial derivatives to the irradiance change and the im-

age disparities at every pixel. It is awkward to express

the terms beyond second-order in (4) and (5) using the
vector-matrix notation because they contain Tensors.

In the special case where the disparities Axp, Ayp
arise from the vehicle motion resulting in apparent im-

age velocities, the equations (4) and (5) with the first

term on the right hand side is the optical now constraint

equation 1°. In this case, the apparent image velocity

components are called the optical flow velocities. This
characterization is avoided here because the disparities

Axp, Ayp may arise from other sources also, stereo

camera arrangement being an example. By adopting
the point-of-view proposed in the foregoing, equations

(4) and (5) may be used for temporal image sequences
from a single camera motion sequence as well as simul-

taneous images obtained from several cameras.

Adding and subtracting the expressions (4) and (5)
results in

E1-E2 = l [gl +g2]d+l dT[H2-H1]d+ ....... (6)

0= [g2-gl]d+ldT[Hl+H2]d+ ....... (7)

Next, as in Reference 8, equation (6) will be used

for obstacle location, while the expression (7) will be

used for computing the truncation error in the Taylor

series approximation. The components of the disparity

vector Azp, Ayp can now be related to the vehicle mo-
tion parameters and the location of various objects in
the field-of-view.

Let zc, Yc, ze be the location of a point on an object

with respect to the camera coordinate system. Since

origin of the image plane is located at the point [f 0 0] T

with respect to the camera frame, this object point

would appear at a point zp, yp on the image plane. If

the camera focal length is f, then perspective projec-

tion rules require that

_--_= _ (s)
f xc

YP = z'-L_ (9)
f xc

Now, if xb, Yb, Zb are the position vector components of

the point xc, Yc, zc in the body axis system,

y¢ : T 1 Yb -- 12

zc Zb -- 13
(10)

where

W 1 =

c_2c_1 c_28_ 1 -8_ 2 ]

8_3s_2c_ 1 -c_38_ 1 8_38_28_ 1Jt-c_3c_ 1 s_3c_ 2

c_38_2e_ 1 -_s_3s_ 1 c_3s_2s_ 1 -s_3eE 1 c_3c_ 2

(11)

The variables c and s in the 3 × 3 matrix in (ll) are the

sine and cosine functions. In a more concise notation,

xc = Tl(Xb -- l) (12)

Next, if the location of the same object with re-

spect to an inertial frame is x, y, z, and the vehicle is

located at a point xv, Yv, zv with respect to this iner-
tial frame, the position components of the object point

in the body frame are given by

[xx]Yb = T2 Y - Yv

Zb Z -- Z v

(13)

where

c0c¢ c0s¢ -sO ]
T= = sCsOc¢ - c¢s¢ sCsOs¢ + c¢c¢ s¢c0

c¢s0c¢ + sCs¢ cCsOs¢- s¢c¢ c¢c0

(14)
Here, ¢, 0, ¢ are the yaw, pitch, and roll attitudes of the

rotorcraft. Equation (13) can be written in a compact
form as

Xb = T2(x - x_) (15)

Since the objective is to eliminate the disparity vec-

tor d in favor of the object position vector components,

equations (6) and (7) examine the changes in xp, yp
in response to the changes in the vehicle location by

Axv, Ay,, Azv. For the sake of clarity, this can be

carried out in two steps. First consider the changes in

xp, yp in response to changes in xc, Yc, zc. This can

be accomplished by evaluating the expressions (8) and
(9) with the camera referenced object location being de-

fined as xc+Axe, yc+Ayc, zc+Azc. Using elementary

algebraic operations it can be shown that:

Ay¢ Axe
Axp = fxc + Axe zp (16)x_ + Axe

Azet AX c

Ayp : fxc + Axe YP Xc + Axe (17)
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These changes are assumed to occur solely due to

the motion of the rotorcraft. Next examine the changes
in xc, W, ze due to the changes in vehicle position com-

ponents xv, V_, z_. Using the coordinate transforma-

tions discussed (12) and (15) one has that:

Axe ---- T1Axb (18)

AXb = AT2(x - x_) - T2Ax_ -- AT2Ax_ (19)

The matrix AT2 is the change in the transforma-
tion matrix relating the body frame and the inertial

frame caused by the changes in the vehicle attitude.

Note that the equation (18) assumes that the camera

is fixed relative to the vehicle. Equation (19) assumes
that the obstacles are fixed with respect to the inertial

frame. Next substituting (19) in (18) results in:

Axe = Tx[AT2(x- x_) - (T2 + ATe)axe] (20)

Using (12) and (15),

x- x_ = T2T[T1Tx_ + 1] (21)

Substituting equation (21) in (20) yields:

Axe = TI[AT2T2T(T1Tx_ + 1)- (T_ + ATe)Axe]

(22)
Finally, dividing expression (22) by x_ on both

sides:

[1]Aye/xe = TI_T_T2TT1T xp/f

AZe/Xe yp/f

+TzAT2T2 T I_/zc -T,(T2+&T2) Ay_/zc

i3/xc Az_/x_

(23)
For the sake of brevity, the equation (23) can be

expressed in the form

Ay_/z_ = k,+t_4/z_ (24)
Azc/_e_ 1:2+ 1:5/z_

with parameters 1:o, 1:1, 1:2, t:3, 1:4, 1:5 being computed us-

ing the operations indicated in equation (23). The rows

of equation (24) can now be substituted in the expres-

sions (16) and (17) to yield

Azp = fkz - xpko + (fk4 - xpkz)/x_
1 + ko + k3/xc

(25)

myp : f1:_ -- ypko + (fk5 - ypk3)lxc (26)
1 + ko + k3/xc

Note that the Axp, Ayp are bilinear with respect
to the inverse of the object position component xc mea-

sured with respect to the camera coordinate system.

Next, the expressions (25) and (26) may be substituted

in the Taylor series approximation of the correspon-
dence equation (6) to yield an equation that relates the

vehicle-camera motion parameters with the image Jr-
radiance partial derivatives. In order to simplify the

development, only a linear approximation will be dis-
cussed in this paper. Approach to include second-order

terms is direct. From (6), the first-order Taylor series

approximation of the correspondence hypothesis is:

L[oQE1 0E21A x 1[_E1 0E2"I

E1--E2:2Lcgxp-l-_-_zpJ P+2LY_"_p +_/_ypoypj
(27)

Substituting for the disparity components Axp,
Ayp in expression (27) from (25), (26) yields:

k3Cl - al(f1:4 - zpk3) - bl(fk5 - ypk3)

xc = al(fkl - xpko) A- bl(fk2 - ypko) - Cl(1 -t- ko)

where
(28)

al : 2 L0_ + J (29)

1 [0El (0E21
bl = _ t cgy, + b-_-y_j (30)

cl = E2 - E1 (31)

Various quantities on the right hand side of equa-

tion (28) can be obtained from on-board instruments

and the given image sequences. Hence, equation (28)
can be solved to obtain xc. Once xc is computed at ev-

ery pixei location, the two remaining components of the

object position vector at every pixel can be determined

using the relations:

y¢ = xcxp/f, z_ = xcyp/f (32)

The position of the object with respect to the in-

ertial frame is then given by:

x = Xv q- T2T(TITXe "4- 1) (33)

The instantaneous vehicle position vector xv, the
instantaneous transformation matrix from the vehicle

body frame to the inertial frame T2, its change AT2,
the constant transformation matrix from the vehicle

body frame to the camera frame Tz, the camera fo-

cal length f and its orientation angles are known from
various on-board instruments.

The image sequence related quantities in the ex-

pression (28) are the image spatial partial derivatives

vqE1/Oxp, cOE1/Oyp, cqE_/cOxp, OE2/cOyp and the irradi-
ance difference E_ - Ez at every pixel. A method for

estimating these quantities will be presented in the next
section.
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Partial Derivative Estimation

Several numerical techniques are available in

the literature for the computation of the partial

derivatives 1°. These range from simple central differ-

ence schemes to very sophisticated algorithms that re-

ject noise and unwanted frequency components in the

input signal. It is well known in the signal processing
literature that derivative estimation is a noise amplify-

ing process. Given an irradiance distribution E(xp, yp),
the objective of the partial derivative estimators are

to provide sufficiently noise free estimates of aE/axp,
fgE/c_yp, _92E/19Zp 2, 02E/£gyp 2, c_2E/OxpOyp ..... to-

gether with a consistent image irradiance distribution.

Additionally, it is desirable to carryout this estimation
process as fast as possible to enable real-time or near

real-time implementation of the object location algo-
rithm.

Frequency domain estimation methods are popular

in the image processing literature 1°. While these ap-
proaches enable a direct formulation of the non-causal

estimation problem, they are unattractive for use with

electro-optical sensors that form images using a sequen-
tial scanning process. In the following, a partial deriva-

tive estimator will be formulated directly in the spa-

tial domain. Unlike the frequency domain estimators,
the present formulation will employ causal estimators

to permit sequential computations. Although this ap-

proximation compromises accuracy to a certain extent,

numerical experiments have shown that the error mag-

nitude can be controlled by an appropriate selection of
the estimator parameters.

Following the frequency domain image processing

methods 1°, the image irradiance distribution E(xp, yp)
will be assumed to be factored into a product of two

functions of one variable each, denoted by the sym-

bols el(zp) and e_(yp). This factorization allows the
evaluation of double integrals as products of two, sin-

gle integrals. Note that such a factorization is routinely

employed to produce solutions of linear partial differen-

tial equations 11. In the following, estimated quantities

will be denoted by a ."Thus,

E = el(xp) E =  a(xp) (34)

is the estimated image irradiance distribution. The
partial derivatives of J_ can be written in terms of the

total derivatives of its factors _1, _ as:

aE" d_l aE d_2

Oxp e_ dxp' Oyp -el _yp,

(928 d2_1 O2E d2_2

= d J' OyJ -

02/__ del d_2 (35)
0  0yp = d-77 '"""

With this factorization, the estimation problem
can be cast as two, coupled, one-dimensional estima-

tion problems. Although the estimation problem can

be formulated either as a serial process or as a parallel
process 9, a serial implementation will be discussed in

this paper.

Define p as the n dimensional estimator state vec-

tor. The estimator dimension n may be selected based

on the order of partial derivatives to be estimated and

the desired smoothness requirement. For instance, if
it is desired to estimate the first-order and the second-

order partial derivatives with the requirement that the

second-order partial derivatives be smooth, n has to

be at least 3. Next consider a linear dynamic process

evolving along the xp direction with the measured im-

age irradiance E as the input.

d

d--_pp = A p + B E (36)

This dynamic process is assumed to evolve along
the image scan lines. The matrices A and B can be cho-

sen to obtain the desired transmission gain and band-

width for the zp spatial frequencies. The output equa-
tion for this linear dynamic process can be defined as:

d_l d2el ...... ]T (37)
r = C p + D E, r = e2[_l dxp dzp _

The matrices C, D should be chosen based on the lin-

ear dynamic system (36) dimension and on the desired
orders of the partial derivatives.

Similarly, define a linear dynamic process evolving
along the yp direction, with the first element of the

vector r as the input, i. e.,

d

_-yp q = M q + N e2dl (38)

The matrices M and N can be chosen to obtain the

desired gain and bandwidth for the yp spatial frequency
components. The output equation of this dynamic pro-
cess can be chosen as

s=K q+L_le2, s=el[ez d_2 d2_2 IT {39)
dyp dyp _ ......

with the matrices K, L being chosen in the same man-

ner as the output matrices C, D in equation (37). The
vectors r and s can now be used to compute the esti-

mated image irradiance and its various partial deriva-

tives. Elements of these vectors will be denoted by lower

case letters in the following. It can be verified that

0/_ Slr2 O9/_
= 81, -- , _ .= 82,

cOxp rl Oyp

02E Slr3 C921_

, -- 83,
Oxp 2- r 1 Oyp 2
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c_2E r2 $2

bxrOy r rl
(40)

In equation (40), it is important to ensure that the
first element of the r vector rl does not become zero at

any point on the image. This can be assured by adding

a constant bias to the input image E and subtracting

this bias at the output. Note that such an operation

does not alter the partial derivative estimates.

Since the partial derivative estimation process was

formulated keeping the image forming process in view,

these quantities are available as the image is being

formed. As a result, by the time the image scan-

ning process is complete, various parameters required in

equation (28) can be computed. Thus, after the avail-

ability of the first frame, the object location computa-

tions can be completed at the camera frame rate.

A block diagram of the object location algorithm

is given in Figure 2. This block diagram assumes that
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The quantities xc, Yc, zc are computed only at

regions where the inter-frame irradiance changes and

the spatial partial derivatives are sufficiently large. The

remaining points are assigned a pre-defined maximum

scene depth. Once the position vectors in the camera

frame become available, the expression (33) can be used

to transform the position components into the inertial
frame.

Results and Discussions

The performance of the obstacle location algorithm

was tested using two different image sequences. The
first of these was a laboratory scene used in References

8 and 9. The second test image sequence was obtained

from a camera mounted on the nose of a helicopter.

Results obtained using the second image sequence will

be discussed in this paper. Two images from the air-

borne camera are shown in Figures 3 and 4. These

Figure 2: The Object Location Algorithm

an image pair is available at the beginning of tim com-

putations. The estimators along the xp and yp direc-
tions provide the noise attenuated partial derivatives to-

gether with consistent image irradiance estimates. Tile

coefficients of equation (28) are then computed by com-

bining this information with the vehicle-camera motion

data. The position vector component xc corresponding

to every point on the image plane is then computed by

applying the expression (28) at every pixel. The ve-
hicle and the camera rotational and translational data

required for this calculation is assumed to be available

from on-board instruments. The other components of

the position vector Yc, zc are then determined using the

expression (32) at every pixel.

Figure 3: The First Sample Image

images consist of a 512 x 512 pixel arrays, with 8 bit

gray-scale digitization. The camera was operating at a

rate of 30 frames/second. During the imaging process,

the rotorcraft was flying at an altitude of about 12 feet

above the runway at a speed of 32.6 feet/second. The

images in Figure 3 and 4 are temporally separated by

0.17 seconds. During this time, the rotorcraft under-

went a translational motion of [5.41, -0.44, 0.02] w feet

and experienced an attitude motion of 0.059 degrees

about the pitch axis, -0.08 degrees about the yaw axis,

and 0.12 degrees about the roll axis.

Besides other things, the Figures 3 and 4 show a

runway, and five vehicles parked on the two sides. The
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Figure 4: The Second Sample Image

instrumented nose boom of the helicopter is clearly vis-

ible at the top right hand part of the image. Time

sync. parameters identifying this frame are displayed
in a sub-picture on the top left-hand-side of the image.

In order to compute the spatial partial derivatives

together with a consistent irradiance distribution, these

images were processed though irradiance estimators of
the form:

d_
= -5.0 p + 5.0 E,

dxp

[,,]_[ 1] r0r_ -5.0 P + [ 5.0.

dq
-- = -5.0 p+ 5.0 _e_,

E

[81][1] [o]= q + d_e_
s_ -5.0

Output of these estimators were used in equation
(40) to form the various partial derivatives. These val-

ues were then used together with the vehicle motion

data obtained from the on-board inertial navigation sys-

tem to compute the distance to various obstacles.

The object location data was computed at 480

points on the image plane. In Figure 5, the points at

which the location data was computed are shown as

white dots. This represents about 0.2 % of the possible

262,144 points. The object location data can be reli-

ably recovered only at those points where a significant

image intensity change is detected between frames.

Figure 5: Points at which Object Location data is Com-
puted

Object Actual

Range
Vehicle 1 356.4

Vehicle 2 607.0

Vehicle 3 232.8

Estimated Number

Range of Points
335.6 113

395.9 24

202.1 160

Table 1. Comparison between Actual Range (feet) and
Estimated Range (feet) for Some of the Objects in the

Scene

Table 1 summarizes the comparison between com-

puted and actual locations of some of the objects in
(41) this scene. This table also gives the number of points

at which the computations were carried out for each

object. Eventhough the image was not of high qual-
ity, note that the algorithm determines the location of

two vehicles with acceptable accuracy. There is a large
error in the location of the vehicle number 2. At this

(42) stage it appears that this inaccuracy may be caused
by the low resolution of the image. Additional tests

are currently being carried out to determine the image
resolution requirement for obtaining a desired position
determination accuracy.

Conclusions

A passive image-based obstacle location algorithm

for use in the guidance of rotorcraft during nap-of-the-

earth flight was described. The algorithm uses the
vehicle-camera translation and rotational motion data

together with the image sequences to compute the lo-

cation of various objects within the field of view.
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ThemethodusesaTaylorseriesapproximationof
the correspondence hypothesis together with the per-

spective projection geometry. The present research gen-

eralizes previous work on an object location algorithm
to include both the translational and rotational motion

of the imaging devices and the vehicle. The resulting

algorithm is more general and can operate in multi-

camera imaging environments. The performance results
using an image sequence from an airborne camera are

given.
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5. Derivative-Free Vision-Based Ranging

In all the computational schemes discussed in this report, the parameters enabling ranging were

the spatial partial derivatives of the image. It is well known in the signal processing discipline that

derivative estimation is a noise amplifying process. Consequently, if a derivative free method can be

synthesized, then it would be less sensitive to picture noise.

This idea forms the basis for the ranging scheme discussed in the following paper. In this scheme,

instead of satisfying the correpondence hypothesis using partial derivative estimates as in previous

chapters, the integral error between a predicted value of image irradiance and those from the actual

measurements are minimized. The solution is required to satisfy a differential constraint derived by

approximating the correspondence hypothesis using Pad_ expansion.

Minimization of the integral irradiance error subject to the differential constraint results in a

calculus of variations problem. The necessary conditions for a minimum yield a set of linear two-point

boundary-value problems, which can be solved using the backward sweep method. In this process,

the sum and the difference between two images are used to form a Riccati equation and a linear

differential equation. These equations are integrated from the right edge of the image to the left edge

to compute the feedback gains for the range estimator. Multiplying these feedback gains with the

difference between the actual and the predicted image irradiances then produce the range estimates.

A paper outlining this work has been communicated for presentation at the 1992 AIAA Guidance,

Navigation, and Control Conference, and is included in the following.
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Vision-Based Stereo Ranging

as an Optimal Control Problem

P. K. A. Menon: B. Sridharfand G. B. (hattelji t
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Abstract

The recent interest in tile use of machine vi-

sion for flight vehicle guidance is motivated by'

the need to automate the nap-of-the-earth flight

regime of helicopters. Vision-based stereo rang-

ing problem is cast as an optimal control problem

in this paper. A quadratic performance index con-

sisting of the integral of the error between observed

image irradiances and those predicted by a Pade'

approximation of the correpondence hypothesis is

then used to define an optimization problem. The

necessary conditions for optimality yield a set of

linear two-point boundary-value problems. These

two-point boundary-value problems are solved in

feedback form using a version of the backward

sweep method. Application of the ranging algo-

rithm is illustrated using a laboratory image pair.

Introduction

Passive ranging has emerged as a central issue

in nap-of-the-earth helicopter flight guidance 1-a

and autonomous planetary rover mission 4-_ as ev-

idenced by the recent appearence of several papers
in this area. Research on both the sensors and

guidance algorithms are currently underway. The

status of research activity on the nap-of-the-earth

guidance problem is summarized in Reference 3.

The research reported in this paper is a compo-

nent of the helicopter guidance problem.

Image-based passive ranging is an active re-
search area in the robotics discipline r. Applica-

*Member AIAA, School of Aerospace Engineering, Geor-

gia Institute of technology, Atlanta. Mailing Address : FSN

Branch, M.S. 210-9, NASA Ames Research Center

t Research Scientist, Member AIAA, FSN Branch, MS

210-9

: Member AIAA, Member of the Professional Staff, Ster-

ling Software, Inc.

tion of this technology for flight vehicle guidance

is a more recent develot)ment. Driven by the need

to determine range to various obstacles within the

field-of-view, Reference 8 outlines the development

of an image-based recursive range determination

scheme for nap-of-the-earth helicopter flight guid-

ance. In that approach, various features such as

edges or regions of high contrast in an image se-

quence were used to determine the range to var-

ious objects within the field-of-view. Techniques

such as this are termed as feature-based ranging to

distinguish them from techniques that do not ex-

plicitly use any features for range determination.

Field-based ranging algorithms, on the other hand

do not explicitly employ any features for range

computations. Various aspects of the development

of a field-based ranging algorithm was described

in References 9 - 12. The algorithm developed in

these papers relied on the image irradiance par-

tial derivatives to compute the range. The anal-

),sis considered both motion and stereo image se-

quences.
Present paper reports on the development of

a field based stereo ranging scheme that does not

require spatial partial derivative estimates. This

research develops a differential constraint based on

the approximation of the correspondence hypoth-

esis using Pade' expansion in a registered stereo

pair. Under certain conditions, this expansion can

be shown to be identical to the Taylor series expan-

sion employed in References 9 - 12. [)'sing perspec-

tive projection relationships, the image disparity

is next eliminated in favor of the stereo baseline,

camera focal length and range. The state variable

in the resulting differential constraint is the sum

of the image irradiances and the control variable

is the range to various points within the field-of-

view. Integral of a quadratic form in the error

between the measured irradiances and those pre-
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dicted by the Pade' approximationof the corre-
pondencehypothesisis thendefinedasthe perfor-
manceindex. Necessaryconditionsfor minimizing
the performanceindex subjectto the differential
constraintareobtainedby the applicationof opti-
mal controltheory13.This processproducesa set
oflineartwo-pointboundary-valueproblemswhich
canbesolvedfor rangein statefeedbackform us-
ing a versionof the backwardsweepalgorithm13.

Tile ensuingsectionswilt discussthe develop-
mentof this algorithmin further detail. Tile per-
formanceof the optimal stereoalgorittunwill be
demonstratedusingalaboratoryimagepair.

Z

,)zKT?----'- ,,"
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Stereo Ranging

Images obtained from a pair of spatiany sep-
arated cameras will exhibit irradiance differences

at each pixel. These differences depend on the rel-

ative location of various objects, relative location
of the cameras, the scene surface reflectance and

the location of illumination. If the scene surface

reflectance is relatively invariant between lh(, two

images, tile reason for observed image irradiance

changes at each pixel may be attributed to the rel-

ative location of various objects within the field-of-

view. This fact forms the basis for corre._pondence

hypothesis.

According to the correspondence hypoth_,sis.

the relative displacement of the corr('._pcmdin_ ob-

jects in an image pair or the disparity can b,, _,m-

ployed together with the perspecliv(, im,j,,(-li(m

geometry to compute the rang(, t() l l,,_,, cd,.i,'cl,_.

Following the existing literature, ll,e fr_mt,d in,-

age plane representation will b(, u_,,d f,_r i,,latw

description. The ensuing analysis will d,,a] _ith

monochromatic stereo pairs oblain_,d u_int_ id,,nli-
cal cameras.

Consider a registered stereo pair 1ogf,t I,'r wit h

the coordinate systems as shown in l"igur_, 1. In

Figure 1, the major axes of the two i,nag_, planes

are designated as the X v axis and the minor axes

are labelled the Yp axis. The origin of this image
plane coordinate system is located at the center of

the aperture. The range z to various objects within

the field-of-view will be measured with respect to

a coordinate system fixed to the origin of tile first

camera lens, located one focal length f behind the

image plane with tile X and Y axis being parallel

to Xp and )_ axes. The second camera is offset

¥1a

Figure 1: Tile coordinate system.

from the orgin of this sytem by a distance Ax along
the X axis. The distance Ax is termed as the

stereo baseline.

In the image plane coordinate system, an im-

age may be defined as an irradiance distribution

E(xp, yp) in the Xp, Yp plane, with E being the it-

radiance specified on a gray scale at a point (xp, yp)
on the image plane. It is assumed here that except

at finite number of points, the image irradiance

distribution is continuous along the horizontal di-

rection Xp. This is a reasonable assumption be-

cause imaging sensors perform spatial integration.

Since the analysis assumes registered stereo pairs,

any number of discontinuities are permitted along

the Yv direction. For the purposes of the present

analysis, nonlinear effects contributed by gray scale

quantization will be ignored.

Let El(Xp, Yv) and E2(xp, yp) be a given stereo

pair obtained from cameras with identical param-

eters. Assume that the two images contain all the

objects of interest and that to a large degree, the

irradiance of the scene is independent of the cam-

era position. Further assume that the two images

are perfectly registered r. In this case, the corre-

spondence hypothesis may be expressed as

El ( Xp ) = E2( xp + Axp ), yp = constant (1)

This equation states that an object at the point

(Xp, yp) in the first image will appear at the point

(Xp + Axp, yp) in the second image. Here, Axl, is
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thedisparitybetweenthecorrespondingobjectsin
thetwoimages.Sincedifferentpointsin the image
planemaycorrespondto differentobjectswithin
thefield-of-view,thedisparityAxp mayvaryasa
functionof x_,. The depth information is encoded

in these disparities. Note that the disparities in

the yp direction are zero because the stereo pair is

assumed to be registered. Further, note that the
limited camera field-of-view and the various occlu-

sions that can arise in real scenes may result in the

correspondence hypothesis not being valid at every

point on the image pair.

Pade' Approximation

The correpondence hypothesis may be satisfied

in various ways. Indeed, the method employed

for satisfying the correspondance hypothesis is the

main feature that distinguishes one stereo ranging

algorithm from another. The feature-based family

of methods s attempt to decrease the complexity

involved in satisfying the correspondence hypoth-

esis by first extracting the features of interest in

an image such as edges or regions of high contrast

and then establishing the correspondence between

them. This step reduces the correspondence task

by a significant amount. Pixel by pixel correlation

methods have also been proposed for satisfying the

correspondence hypothesiQ 4.

In the present paper, an alternate approach

for satisfying the correspondence hypothesis will

be advanced. Using Laplace transformQ s together

with the shift theoreln, the correspondence equa-

tion (1)over small patches can be written as:

El(s) = e'a_"E2(.s) (:2)

Here _ is the Laplacian operator. According to

equations (1), and (2), the image irradiance distri-

bution in the second image is simply the image Jr-

radiance in the first image shifted by the unknown

disparity at a pixel. Expression (2) can next be

expanded using Pade' approximation 16. The ex-

pression (2) is first rewritten as

e 2 El(s) = e' 2 E2f.s) (3)

Expanding both sides,

1

El(s) - _sEl(s)Axp + ......

I_E
= E2(_) + _- 2(s)Axp + ...... (4)

Retaining the two leading terms on both sides and

inverse transforming yields the differential equa-
tion

1 d

2(E1 - E.z)_x p dxp(E1 + E2) (5)

A similar expression was derived in Reference

10 using forward and backward expansion of the

Taylor series. In order to assure continuous depen-

dence of the left hand side of the expression (5) on

Axp, it will be assumed that E1 - E2 ¢ 0 over

any finite interval of xt,. It is sometimes useflll

to retain higher-order terms in the Pade' expan-

sion. However, tile resulting differential equation

for correspondence hypothesis will be nonlinear in

1/Axp, making the solution process more complex.

Next, the geometry of image forming process

will be used to eliminate the unknown disparity

Axp from expression (5) in favor of camera param-

eters and range. From the perspective projection

geometry, an object, located at a position (x, z)

will appear at a point

Xp X
- (6)

f

in the first image. Since tile second image in the

registered stereo pair is located at (x + Ax), the

same object will appear at a point

xp+Axp _ x+Ax
(7)

f z

in the second image. Ax v is the disparity at a

point on the image plane corresponding to an ob-

ject. An expression relating the disparity, stereo

baseline and the range to an object can be obtained

by subtracting expression (6) from expression (7),
Viz.

Ax

Aarp = f-- (8)
z

Note that the stereo baseline Ax and tile cam-

era focal length f are known. Expression (8) re-

lates the observed disparity Axp at a pixel location

to the range to an object z. Using expression (8)

in the approximation for the correspondence hy-

pothesis (5) yields

d 2(/21 - E2 )
--(El + E2) = z
d:rp fax

Next, define two new variables

(9)
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G = E1 + E2, A - 2(El - E2) (10)
fax

So that the expression (9) beconws

(; = Az (11)

From this point on, a dot over variables will be

used to denote differentiation with respect to the

independent variable xp. Expression (11) relates

the sum and differences of the observed image ir-

radiances with the range to various objects within

the field-of-view. If the image irradiances, focal

length and the stereo baseline are given, then the

coefficient A(xp) can be computed at every point

on the image plane. In this case, expression (11)

is a varying coefficient first-order linear differential

equation with z as the input and G as the state.

In the next section, the differential constraint

expressed by equation (11) will be used together

with the measured image irradiance to determine

the range as a function of xp.

Ranging as a Two-Point Boundary-Value
Problem

The data available in a registered stereo pair are

the linage irradiances Ea(Xp, yp) and E2(Xp, yp)

along every yp within the camera frame. Accord-

ing to the differential constraint approximating the

correspondence hypothesis given (11), at every y;
coordinate, the derivative of the sum of the ir-

radiances when divided by the varying coefficient

A(xp) will yield the range z as a function of the

image plane coordinate xp. References 9 - 12 ap-

proched the ranging problem in precisely this man-

ner. Specifically, in Reference 12, the image irra-

diance derivatives were first computed using linear

estimators• An approximation to the correspon-

dence hypothesis such as equation (11) was then

used to compute range. In the following, an alter-

native to this two step procedure will be developed.

Since the differential constraint (11) is only an

approximation and because of the fact that the ob-

served irradiances are corrupted by noise, one may
require that this differential constraint be satisfied

in a minimum integral square error fashion. To

this end, consider the problem

min[2[G-(;]2[_v=xv(_ )

subject to the differential constraint

(12)

G-- A z (13)

(_1is the sum of the measured irradiances, and the

coefficient A(xv) is computed fi'om the measured

irradiances and camera parameters using the ex-

pression (10). The upper and lower integration

limits xp(1), xp(r) correspond to the left and right

image boundaries. Although by no means essen-

tial, in order to simplify the ensuing development,
it will be assumed that the sum of the measured

irradiances (_' and G computed from the differen-

tial constraint (13) are equal at the left boundary

of the image• This

condition G(x;(l))
the right boundary

implies that the left boundary
^

= G(xv(l)) is specified, while
condition is free.

The first term weighted by the parameter 7

in (12) helps to ensure that the measured sum of
irradiances G' and the predicted sum of irradiances

G are close at the right edge of the image. The

weighting factors a and/7 in the performance index

(12) can be used to establish the trade-off between

irradiance error and the range. Bryson's rule la can

be used to select the weighting factors as :

1

: [z_(,.) ._/t)]GM 14)

1
/3_ 15)

[xp(r)- ._'_,(t)]_M

1

OMixv=_ v (r)

where GM is the maximum acceptable value of

(G-(_,)2 and zm is the maximum acceptable value
of z 2.

Attention is drawn to the fact that the second

term in integrand of (12) is essential to ensure the
existence of a non-trivial solution. This term has

the effect of limiting the magnitude of the range

with respect to irradiance changes. The weighting

factors a, /3 are permitted to be functions of xp.

It is assumed here that the computation proceeds

fi'om the left boundary of the image to the right
boundary.

The expressions (12) and (13) define an opti-

mal control problem, with G as the state variable

and z as the control variable. Necessary condi-

tions for a minimum can be obtained by formally
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apt)lyingPontriagin'sminimumprinciplela. The
first stephereis the formulationof thevariational
Itamiltonian13as:

./32H = [G-(;]2+-_z +A/Iz (17)

A isthe unknown costate. The necessarycondi-

tionsfor optimum are 13 :

= -_[G - _] (18)

AA
- (19)

Since tile sum of tile irradiances G is required

to satisfiy the measured value 6' exactly at the left

boundary of the image plane, the costate A at this

boundary is unspecified• At the right boundary,

the term minimizing the square of the deviations

on the right boundary dictates the value of the

costate, i. e.

^

A(._(,-)) = 7[G- 6']1_,=_(_) (20)

Sul)stituting for z in (13) using expression (19)

yields the two-point boundary-value problem at

each specified valne of Yv as :

• A 2
G= ---A, G(xp(l)) Specified (21)

= -_[G - dl,

_(*Al)) ,,mk,_owT_,;_(*A,)) = _,[6' - dllx:_.,,(,.)
(22)

The linear two-point boundary value problem

(21), (22) can be solved in feedback form for G and

A by using a version of the backward sweep 13, as

will be demonstrated in the following. Substituting

these values in expression (19) then yields range at
each point on the image plane.

Since the state is specified at one of the bound-

aries and because tile system has a forcing input
(_', postulate a solution for costate A as :

A = SG + It (23)

The first term takes care of the instantaneous de-

pendence of the costate on the state G, while the

second term accounts for the external input G'.

In order that expression (23) satisfies the

boundary condition (20), it is necessary that

^

,5'(z_,(r)) = 7, /((*,(,'))= -7(; (2,1)

Differentiating the expression (23) and substitut-

ing for (;' and _ from (21) and (22) yields

--_(G -- G') = ,5'(1' -- S A2 '
T[,5'(; + h] + [(

Separating terms

(25)

I,+ sO - Ii _;(_'' - s'_A_
5'_ = , /_ + _) (26)

Since expression (26) must hohl for arbitrary
values of G, one has that

,_ = S 2 A 2
-77- - ct' (27)

, A 2

R = _7i, + _d (28)

with the boundary condition being given by (24).

Expression (27)is a Riccati differential equa-

tion, while (28) is a linear differential equation.
Once the value of S and h" are known as a func-

tion of ,p, the range can be computed as

[SG + h']A
z = (29)

The equation (29) is a linear feedback law for

range z in terms of the state G and the weighting

factors. In a following subsection, implementation

of the range computation algorithm will be given
in further detail.

Note that two-point boundary-value problems
such as the one discussed above can be derived for

every pair of lines in the registered stereo pair. Ad-

ditionally, if the weights a, /3, 3: are assigned cer-

tain statistical significance, the optimization prob-

lem discussed in the foregoing call be posed as the

smoothing problem in estimation theory 13.

Second-Order Necessary Conditions

It is known 13 that the sufficient conditions for

an optimum requires the second variation to be

strictly positive• This requirement can l)e met by

satisfying the Legendre-Clebsch and ,lacobi nec-

essary conditions in strengthened form. Each of
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thesenecessaryconditionswill bebrieflyexamined
for the stereorangingschemein the following.

(1) Legendre-Clet)schnecessarycondition:
This necessaryconditionexaminestile sign

of the secondpartial derivativeof the variational
Hamiltonianwith respectto thecontrolvariablez.

Thus, a necessary condition for optimality is :

02H

Oz--T > 0 (30)

This condition can be found to t)e satisfied if

/3 > 0 (31)

Since the parameter /3 is a user specified

quantity, the Legendre-Clebsch necessary condi-

tion does not impose any restrictions on the com-

putational scheme.

(2)Jacobi's necessary condition :

The stereo ranging process described in the

foregoing is a linear optimal control problem.

Hence, Jacobi's necessary condition will be satis-

fied with a margin if the differential equations (27)

and (28) produce finite values and if the variable S

is positive 13. Thus, if the range estimates emerging

from the present computations are finite, Jacobi's

necessary condition will be met with a margin.

In summary, if the parameter _ is chosen to

be positive and if the resulting the range estimates

remain finite, the results would be optimal with

respect to the specified performance index.

The Computational Algorithm

Since the ranging scheme will be tested using dis-

cretized images, the algorithm implementation will

be discussed in terms of such images. Consider an

image consisting of m × n pixel array. Let the hor-

izontal field-of-view be _b radians and the vertical

field-of-view be 8 radians, with f as the camera fo-

cal length. As the stereo image pair is registered,

the analysis can be carried out separately for m

pair of lines. Along any picture line, the distance

between the centers of any two pixels is given by :

t6 - 2f tan !t,/2 (32)
/1

Various differential equations involved in the

stereo algorithm can now be discretized using this
distance.

The first step in the computational algorithm

is the formation of quantities

-- E=)I
Ai = fax i (33)

an d

(;i = (El + E2)[i (34)

for i = l, 2, 3 ..... n, at every pixel along each of the

m lines of tile registered stereo pair. These quan-

tities are stored for subsequent use. The camera

focal length f and the stereo baseline Ax are con-

stants of this process. If the coefficient A(xp) is

zero anywhere on the image plane, it can be re-

placed by a very small value in order to ensure

complete controllability of the process defined by

(13).

Next, the difference equations

Aj2 _5
5'j+l = ,5'j q- ,5'j2 3 c_ (35)

Aj2 _5
I(j+ 1 = Kj + SjTK j -_ oz(;'j¢5 (36)

for j = n,n - 1,n - 2,. .... 1, are propagated from

the right edge of the image to the left edge using

the specified conditions on the right edge S,, =

7, K,, = -7(_;n. The results are then stored in

two arrays.

As the third step, propagate the differential
constraint

Ak26

Gk+l = Gk - --_[SkGk +I(k] (37)

for k = 1,2, ..n, using the condition G1 = ('_71from

the left boundary of the image to the right edge of

the image. Store the Gk history in an array.

The final step is the computation of the range

using the stored histories S, K, G using the expres-
sion

[SkGk + Kk]Ak
zk = (33)

This procedure is repeated for every m hori-

zontal line in the two images. A flow chart illus-

trating various steps in the range computations is

shown in Figure 2. In the next section, the use of

this stereo ranging scheme will be illustrated using

a laboratory image pair.
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OptimizationWeights:

+
Propagate From Right to Left

2
-----_ 2 Aj_

Sj+I=Sj+Sj. J3

AI8
KJ+I = Kj + SJ'-_Kj+a _i 6

Propagate from Left to Right
2

Ak6
Gk+l=Gk- --[SkG k +Kk]

'. Compum • . I
z-,,-- = _ [_ Gk +Kk

13 J__zk

Figure 2: The stereo ranging scheme.

Results and Discussions

The ranging algorithm was tested using a lab-

oratory stereo pair shown in Figures 3 and 4.

Figure 4: The laboratory stereo pair: right image.

5. The stereo images were produced using a CCD

(Charge Coupled Device) camera with a field-of-

view of about 45 degrees and a focal length of
about 6 ram. The stereo baseline was 0.1 inches.

The gray scale consisted of 256 levels correspond-

ing to 8 bit, digitization of the CCD image. The

CCD output was digitized and processed on a SUN
workstation.

Figure 3: The laboratory stereo pair: left image.

The scene consisted of a dark wall in the back-

ground with a table in the foreground. A soda can

together with two pencils were then arranged on

this table. A wire is strung across the two pen-

oils to explore the feasibility of detecting obstacles

with small dimensions. A plan view of the various

objects within the field-of-view is given in Figure

Tape
m

Soda
Left Can
Pencil

O O Right
Pencil

oBracket

1

40

30

20

I0

P

0

Figure 5: A plan view of the various objects in the
field-of-view.

Sum and difference between the two images in

the stereo pair are next fornted. These are shown

in Figures 6 and 7. Range calculations are cat'-
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ried out using the data available ill these images.

The weighting factors used ill generating the re-

suits given in this paper are a = 1.0 , /3 = 0.001 ,

7 = 1 × 106. Tile solution to tile Riccati equation

(3.5) and the equation (36) generated using these

weighting factors are illustrated in figures 8 and 9.

Figure 6: The laboratory stereo pair: the sum of

the irradiances.

Figure 8: Solution of the Riccati equation, S.

Figure 7: The laboratory stereo pair: the differ-

ence between the irradiances.

Figure 9: Solution of the equation (36), K.

These images are scaled so that black corresponds

to zero and white corresponds to the maximum

value. Note that tile value of S is always greater

than zero. The results of the range calculation are

summarized in Table 1. Range estimates are accu-

rate to within 10% in most cases. To illustrate the
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Table 1: Comparison Between Actual Range

(inches) and the Estimated Range (inches)

Object Actual Estimated No. of

Range Range Points

Left Pencil

Right Pencil

Tape-on-wall

Soda can

Bracket

30.0

26.0

60.0

28.5

19.0

24.13

23.37

57.82

21.43

18.55

911

1889

639

2139

982

nature of range output corresponding to the soda

call, a histogram showing the number of points at

one inch intervals is given in Figure 10. The asym-

metric nature of the range estimate distribution

can be seen from this picture. The range tom-

g
r_

O

a¢.

i-

m i

0
0.

,_-O

®
.,o
E
3

o

o 20 40 150

z (Tn.)

Figure 10: Range histogram for the soda can.

puted at points of small irradiance differences are

suceptable to noise. As a result, the ranges corre-

sponding to such points are dropped from further

consideration. From Table 1 it may be observed

that the computed ranges compare favorably with

the actual ranges. The number of range points

correponding to various objects show the dense na-

ture of computed range points. Typically, range is

computed at about 10 % of the points on tile im-

age plane. To further illustrate the performance

of the ranging algorithm, the computed ranges are

displayed in a 3-D format in Figure 11. Relative

¢I

0

o

Figure 11: Computed ranges from the laboratory

image pair.

placement of various range points can be visualized

from this figure. In Figure 12, the sum of the irra-

diances produced by the differential constraint (i3)

while computing the ranges is illustrated. Figures

......... ..............:+:,:.:+:.:,:+:::.:.:.:+:,: ::::.:

Figure 12: Sum of the irradiances predicted by the

ranging algorithm.

12 and 6 can be comt)ared to evaluate the effect of

the weighting parameters c_, /L _'.hnage in Figure

12 is a smoothed version of image 6. The weight-

ing parameters o, /L 7 should be chosen to retain

adequate fidelity between Figures 6 and 12.

The accuracy of the present range calcula-
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tion can be improvedby employinga finer gray
scalequantization. Further improvementcan be
achievedby increasingthe pixeldensityin tile im-
ageplane. Additionally, one may implementa
rangingalgorithmbasedoil higher-orderPade'ap-
proximationof thecorrespondenceequation.Note
that in theforegoing,theconstraintthat thecom-
puted rangeshouldbegreatertitan zerowasnot
explicitly included.Modificationof thepresentfor-
mulation to includethis requirementwill bea fu-
ture researchitem.

Conclusions

Vision-based stereo ranging was cast an op-

timal control problem in this paper. Tile cor-

respondence hypothesis was approximated using

Pade' approximation and was used as a differen-

tial constraint in an optimization problem with a

quadratic performance index. The state variable

in this formulation was the sum of the image irra-

diances and the control variable was the range to

various objects within the field-of-view.

Since this differential constraint is only an ap-

proximation and due to the fact that the observed

irradiances are corrupted by noise, it was satis-

fied in a minimum error sense by defining a perfor-

mance index. The performance index consisted of

a weighted linear combination of the square of the
irradiance error between the actual irradiance and

that predicted by the correspondence hypothesis,

and the range from the image plane.

The necessary conditions for optimality yield

linear two-point boundary value problems which

were solved using a version of backward sweep

method. Second-order necessary conditions ensur-

ing the optimality of the range estimates were ex-

plored. A discrete implementation of the algorithm

was then discussed. Finally, the ranging algorithm

performance was demonstrated using a laboratory

image pail'.

The contributions of the present research are

the following

• A new approximation for correpondence hy-

pothesis in stereo ranging was developed using

Pade' expansion.

The image-based ranging problem was formu-

lated as an optimal control problem, obviating

the need for computing partial derivatives as

in previous research.

* It was shown that the optimality of the range
estimates can be assured under certain mild

rest rictions.

• The performance of the stereo ranging algo-

rithm was demonstrated using a laboratory

stereo pair.
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6. Guidance Law for Vision-Based Aircraft Maneuvers

The range data produced by vision-based ranging algorithms are in discrete form. Typically, the

data is available only at about 10 % of the points. A need exists for deriving guidance laws that

use the sparse range data to generate a clear trajectory joining the initial and final conditions. An

exploratory look in this direction is discussed in the following paper.

In this work, an optimal control problem that maximizes the sum of the distances to various range

points within the field of view subject to differential constraints arising from the helicopter point-mass

equations of motion are considered. The performance index additionally includes the square of the

vehicle acceleration and the flight time, both of which serve to ensure that the resulting trajectories are

implementable. Feedback linearization of the helicopter dynamics is used to make the present optimal

control problem amenable to analysis. Necessary conditions for optimality yield a linear two-point

boundary-value problem which can be solved in feedback form. Inverse transformation of the result

then produces the desired guidance law. The present analysis resulted in the synthesis of a nonlinear

guidance law in state feedback form. A paper based on this research was presented at the 1991 AIAA

Guidance, Navigation, and Control Conference. This paper is given in the following.
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Guidance for Rotorcraft
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Abstract

An optimal guidance scheme for vision-based ob-

stacle avoidance is developed. The proposed approach

is useful for automating low-altitude rotorcraft flight. It

explicitly accounts for the discrete nature of range in-
formation available from vision-based sensors and uses

a linear combination of flight time, square of the vehicle

acceleration and the square of the distance to various

sensed obstacles as the performance index. A sixth-
order, three-degree-of-freedom nonlinear point-mass ve-

hicle model is included in the analysis. Numerical re-

sults using a sample image sequence is given.

Introduction

Passive vision-based obstacle-detection sensors are

currently being developed by NASA for use with au-

tomated nap-of-the-earth rotorcraft flight 1-6. The ob-

jective is to automate the low-altitude rotorcraft flight

regime using vision-based sensors such as low-light tele-
vision and infrared imagers. The first aspect of this

problem, viz., the problem of ranging using motion and

stereo image sequences is currently being addressed by
several researchers 2-6 .

The focus of the present paper will be the develop-

ment of a guidance law for synthesizing flyable trajec-

tories using the vision-based sensor derived range data.

Due to the discrete nature of the current imaging sen-

sors and because of the fact that the range can be com-

puted only at those regions where a contrast exists, the

range information is typically available only at about
10 % of the points in an image. This necessitates the

development of obstacle-avoidance guidance laws that

use the discrete range data to synthesize implementable

trajectories.

The robotics literature is replete with obstacle-

avoidance algorithms, most of which have a heuristic

basis; see Reference 7 for example. Algorithms that

*Member AIAA, School of Aerospace Engineering, Georgia
Institute of technology, Atlanta. Mailing Address : FSN Branch,
M.S. 210.9, NASA Ames Research Center

?Member AIAA, Member of the Professional Staff, Sterling
Software, Inc. 1121 San Antonio Road, Palo Alto, CA 94303

tResearch Scientist, Member AIAA, FSN Branch, M.S. 210-9

use various approximations for obstacles s and those

that require extensive numerical calculations 9 have also

been discussed in the literature. With the exception of

the heuristic algorithm discussed in Reference 10, these

guidance laws are primarily useful for two-dimensional

maneuvers and assume the availability of the exact ob-
stacle dimensions and location.

In the present research, optimal control theory 11

will be used in conjunction with feedback linearization

to synthesize a guidance law for obstacle avoidance.

The research will employ a nonlinear point-mass he-

licopter model. It will be assumed that the initial and

final vehicle position and velocity are specified. Using

a performance index consisting of a linear combination

of the flight time, square of the rotorcraft acceleration

magnitude and the sum of the distances to various ob-
stacles, an optimal control law will be obtained in closed

form. For this initial study, it will be assumed that the

obstacles are fixed. Generalization to the case of moving
obstacles is not difficult, although non-trivial. Further,

the vehicle as well as the obstacles will be represented

by points. Using a previously discussed methodology 12,

it is possible to tailor the present formulation to include

the geometric dimensions of the helicopter and the ob-

stacles. This aspect of the obstacle avoidance guidance

will be investigated in a future research. Finally, it

may be noted in passing that the present methodology

is useful for other vision-based guidance tasks such as

spacecraft docking and autonomous vehicle guidance.

Vehicle Model

The three-degree-of-freedom point-mass model for

a rotorcraft is given by the following six first-order non-

linear differential equations :

Tsin 0 - D
V' - g sin 7

m

T cos 0 sin ¢

mV cos 7

T cos 0 cos ¢ g cos 7

mV V

x _= VcosTcosx

(1)

(2)

(3)

(4)
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y' = V cos 7 sin X (5)

z' = V sin 7 (6)

Here, x is the down range, y the cross range, z alti-

tude, V airspeed, 7 the flight-path angle, X heading

angle, T main-rotor thrust, m the vehicle mass and g

is the acceleration due to gravity. A prime over a vari-
able indicates differentiation with respect to time. The

variable D is the vehicle drag, determined using the at-

mospheric density p, airspeed V, the reference area s

and the drag coefficient CD as:

1 2

D = _pV sCo (7)

The drag coefficient for the UH-60 helicopter from Ref-
erence 13 will be employed in this work. The coordinate

system used in deriving the vehicle model is illustrated

in Figure 1. The control variables in these equations

z lt'-f-i

&
T .-::---_.Y7

/"'+ .......... _ z"
/" I ,"

i
i
I

-... j/

........ "-..__

- y

X

Figure 1: The coordinate system

are the rotor thrust orientation angle 0 measured with

respect a plane normal to the velocity vector, the bank

angle ¢ measured with respect to the local vertical, and

the main rotor thrust magnitude T.
If one attempts to derive an obstacle-avoidance

guidance law using the nonlinear vehicle model de-

scribed in the foregoing, the solution can only be ob-

tained using numerical methods. The objective here,
however, is to obtain a feedback law. To meet this ob-

jective, the nonlinear system will be first transformed

to a linear time-invariant form using a coordinate trans-

formation. This transformation implicitly assumes the

availability of the vehicle velocity vector components

from on-board measurements. The guidance problem
is then solved in the transformed coordinates. Inverse

transformation of the result then produces the nonlin-

ear feedback guidance law.

Differentiating the down-range, cross-range, alti-
tude equations once with respect to time, the rotorcraft

equations of motion can be expressed in the following
form.

z"=a_, V"=av, z"=az (8)

The right hand sides of these equations are given
by

ax = V' cos 7 cos X - x'V cos 3' sin X

-7'V sin 7 cos X (9)

av = V' cos 7 sin X + x'V cos ? cos X

-7' V sin 7 sin X (lO)

az = V'sin7 + 7'Vcos7 (11)

The variables V I, 7 I, X I may be eliminated from equa-

tions (9) - (11) using expressions (1) - (3).

The vehicle acceleration components ax, %, a, will

be treated as the new control variables in the guidance
problem and will be termed the pseudo-control vari-

ables in the ensuing. Note that the system dynamics is
linear in terms of the pseudo-control variables. If these

variables were known, together with the vehicle velocity
vector components x _, yJ, z j, the actual control variables
can be computed as:

dz=tan-l[ %c°sx-a'sinX]-_

0 =tan-l[ c°s¢(N1 +N2)+F N3]

mF
T=

cos e cos ¢

(12)

(13)

14)

where,

V = _/x '2 +t{ 2 + z '2 (15)

7 = sin-l(z'/V), X = tan-l(Y'/x ') (16)

N1 = axcos'rcosx + av cosTsin X (17)

N2 = (az +g)sin 7, N3 = Dcos¢/m (18)

r=(g+a,)cos 7-a_sinTcos X-avsin7sin x (19)

The vehicle model is now in the form of a linear

time-invariant system. If the obstacle avoidance prob-

lem is formulated in transformed coordinates, it can be
solved in closed form.
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Guidance Law Development

Given the current vehicle position and the desired

final vehicle position, the objective is to produce a tra-
jectory that maximizes the sum of the square of the dis-
tances from the vehicle to the various obstacles located

at the points xi, Yi, zi, i = 1,2, ...n. Further, to enhance

the trajectory masking, the vehicle is required to stay

as close as possible to a specified altitude zr while using

the least square of vehicle acceleration magnitude. It
is sometimes desirable to execute the mission in mini-

mum flight time. Thus, a composite performance index

of the following form may be specified.

a mina. fo"{(+_"_[a(a_:_+a_2+as _)

P'i

+u(z - z,): - Z_[(x - x,)_
i=1

The initial vehicle position components x0, Y0, z0, the

velocity components xl0, YJ0, z% , the obstacle position
components xi, Yi, zi, i = 1,2,....n, the final vehicle

position components x f, Yl, z f, and the velocity com-

ponents x'I, Y_I, z'! are assumed to be specified. The
positive parameters (, a, p, fl in the performance index

establish the relative weighting of flight time, vehicle

acceleration, altitude deviation from the reference alti-
tude and the distance to various obstacles. For reasons

that will be made clear in the ensuing, the parameters

(,/3 and p are required to satisfy the constraints

0<(< 1, n_>p (21)

The variationalHamiltonian ]I for thisproblem is

definedas

H =(+ (_2_) {a(a_2 +%2 +a,_ }

n

+u(_- z_)_- Z_[(_ - x,?

+(u - y,)_ + (_ - z,)_]} + _,_.

+A_,% + A_,a_ + A_z'+ Auy' + Asz'

The necessary conditions for optimality are

A'_,= -A=, A'y,= -Ay, A'_,= -A_

A'_ = (1 - ()/? E(x - xi)
i--1

(22)

(23)

(24)

12

i----1

(25)

[° ]A', = (1 - () /3E(z - zi) - p(z - z,) (26)
i=1

-A_, -Au, -As,

a,- a(1-()' a_- (_(1-()' a, a(1-() (27)

The strict upper bound on the parameter ( in equation

(21) is required to ensure that the control variables re-
main finite.

Since all the states are specified at the initial and

final time, no boundary conditions can be specified on

the costates. The state-costate system for this problem
is linear. Consequently, the closed-form solution can

be obtained by proceeding as follows. Differentiate the

Al_ ', A'_ ', A's' equations (23) with respect to time and

substitute for A'x, A'u, A's from the expressions (24) -
(26). This yields :

),"_, = -(1 - ()_E(x - x,) (28)
i----1

_"_, = -(1 - ()_ X_(u - y_) (29)
i=1

a",, = -(1 - ¢) B (_ - z,) - ,(_ - _)
i=1

(30)

Next, substitute for a_,a_,,as in terms of the

costates A¢,, Au, ,As, in the x", y", z" equations to
yield:

x" -Ax' , y"- -Au' z" -Az' (31)- - .Szb

Differentiating the equations (31) twice with re-

spect to time and substituting for A"_,, M_y,, A"z' from
(28) - (30) results in three fourth-order linear differen-

tial equations of the form

n

x,,,,= E.x-
i=1

(32)

l"l

u'"' = £[-u - _ y,] (33)
i=1

z "'1= nfl-#z-_Ezi+_--z,. (34)
i=1

,./Z_;
Denoting al = V --J" the eigenvalues of the equa-

tions (32) and (33) are
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0"1,--0"1, j_l,--J0"1 (35)

Note that j = v/ST. Similarly, denoting 0"2 :

_//_ the eigenvalues for the equation (34) are given

by:

0"_, -0"2, J0"2, -ja2 (36)

The constraint on the product n/_ as in equation

(21) is essential for the obtaining the real eigenvalues

in (36).

Now, from the theory of linear differential

equations 14, the general solutions to the necessary con-

ditions (32) - (34) can be obtained as:

z(t) = Axe "xt + B=e -a't + C= sin 0.it

+D= cos.it + st (37)

y(t) = Ave qlt + Bre -°'' + C r sin 0.,t

+D r cOSalt -F s r (38)

z(t) = A2e "2' + B_e -'_' + C_ sin 0._t

where

+D_ cos a2t + s_ (39)

1 n 1 n

= -nE ,r= E (40)
i=1 i=l

s. = n]_--- p i=x

Az, Ar, A_, B_, Br, B., C_, Cr, C., D_, Dr, D.
are the constants determined using the specified bound-
ary conditions. It may be verified that the costates in

this problem are given by:

_Y' -- Or(_ -- 1)0.12 [Are'" + Bre-'_'

-Cy sin alt - Dy cos alt]

_, = a(_ - 1)tr22 [A_e "_' + B.e -_t

(42)

(43)

]
_ C_

sin

0._t - D. cos 0. tj (44)

_. = a(1 -()al 3 [A.e "_* - B,:e -'_t

-Cx cos 0.1t + Dr sin trlt] (45)

_r = a(1 - _)a13[Aye "l' -- B_e -°_'

-Cy cos 0.1t + D r sin alt] (46)

A z = O¢(1 -- _)O'2 3 [Aze _'2t - Bze -'2'

-C. cos a2t + D. sin a_t] (47)

Next, applying the given boundary conditions

along the x,y,z axes leadsto the matrix equations

;r 0 -- 8 t

XIO

Xl - sx
=P

mar

B_

c_
Dr

(48)

YO -- 8 r

y! -- 8 r

Z 0 _ 8 z

Zto

Z! -- 8z

Z't

=P

=Q

my

B_

Dr

A_

B_

c_
D_

(49)

(50)

where

p .m

1 1 0 1

0.1 --0.1 0"1 0

ealt! e-air! _1 C1

ffl ealt! --(71 e-'l|! 0.1C1 -o'1 S1

(51)

Q

1 1 0 1

0"2 --0.2 0"2 0

ea2t! e -'_t! $2 C2

0"2 east! --0"2 e-azl! 0"2C2 -0"2S2

(52)

S1 : sin0.1t/, C1 : cos.it/ (53)

$2 = sin 0"2t1, C2 = cos 0.2t1 (54)

The matrix equations (48) - (50) can be solved to

yield the 12 arbitrary constants in the problem if the

final time t! were known.

The final time can be determined by invoking a

constant of motion in this problem. Since the varia-

tional Hamiltonian is autonomous, and since the time
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weightparameter_ is constrainedto begreaterthan
zero,thefinaltimemaybefoundusingthetransversal-
ity condition:

H(I) = H(tl) = 0 (55)

Satisfaction of this condition would involve a one-
dimensional search wherein one would assume a final

time and determine the value of the variational Hamil-

tonian by first finding the arbitrary constants and then

substituting for the states, costates and the control vari-

ables. If this results in the satisfaction of equation (55),
then the optimal final time has been found. Otherwise,

update the assumed final time and repeat these calcu-

lations. One-dimensional search techniques such as the

method of bisections can be used to rapidly determine

this quantity.

Note that at this stage, the solution is in open-
loop form. Since the position of the obstacles and the

vehicle states may not be known exactly, a closed-loop

solution is desirable for on-board implementation. To
this end, assume that the current time is the initial

time, t = 0. The current vehicle states then become

the initial conditions and the final time t! becomes the

time-to-go, denoted by the variable tgo. The current

commanded vehicle accelerations are then given by the
expressions

a_ = as2 [z - s_ - 2D_]

(56)

(57)

(58)

The unknowns in the expression (56)- (58) are the
arbitrary constants Dx, Dy, Dz. These may be found

using the matrix equations (48) - (50). The resulting
closed-loop guidance law will be of the form

a_ = kl(x - s_) + k_(zf - s_) + k3x' + k4z' I (59)

av = kl(y - sv) + ks(y I - sv) + k3y' + k4y'f (60)

a_=ks(z- s_)+k6(z I - s,)+kTZ'+ksz'j (61)

where

kl = als sin aatao sinh _ltao (62)
cos altao cosh altgo - 1

ks= als(C°sa'ta°-c°shazta°) (63)
cos altgo cosh aztgo- 1

k3 = al[sin aztao cosh aztao - cos altgo sinh aatao ]
cos allao cosh altao - 1

k 7 =

(64)

k4= aa(sinh altao - sin altgo) (65)
cos altgo cosh altg o -- 1

a2 s sin a2tgo sinh a2tgo (66)
ks = cosa2tao coshastao- I

k6= a2(c°sa2ta° - cosh astao ) (67)
cos ast_o cosh a_tao - 1

as[sin a2tgo cosh a_tao - cos astao sinh a#ao ]

cosa2lao cosh astgo - 1

(68)

ks = a2(sinh a2tgo - sin a#9o ) (69)
cos a2tao cosh astao -- 1

The only unknown parameter in these equations is the

time-to-go. This quantity can be computed using a
one-dimensional numerical search just as in the com-

putation of t/ discussed previously.

Once the variables az, av, az are calculated, the real

control variables of the aircraft can be recovered using
the transformations given in equations (12) -(14). Fur-

ther details of the guidance law implementation will be
described in the next section.

Note that the controls emerging from the present

development satisfy the strengthened Legendre-Clebsch
necessary condition. Verification of the Jacobi's neces-

sary condition will be a future research item.

Algorithm Implementation and

Evaluation

The obstacle-avoidance guidance law was imple-
mented on a nonlinear point-mass simulation of the ro-

torcraft. The salient steps in implementing the guid-
ance law are: at each guidance interval,

1. Select the acceleration weight a, the obstacle-

avoidance weight /3, the altitude-deviation con-

straint weight # and the time weight (.

2. Compute the eigenvalue magnitude ax, as, and

s_, sv, s, using the given formulae.

. Using the current states and the final states, com-

pute the time-to-go using the transversality condi-
tion H(to) = O.

4. Compute the feedback gains kl...ks and calculate

the desired vehicle accelerations a_, %, a, in feed-
back form.
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5. Usingthe commandedvehicleacceleration,com-
putetherequiredrotorcraftmainrotor thrustT,

thrust orientation angle 0 and the bank angle ¢.

In order to evaluate the performance of the guid-

ance law, trajectories were generated using a range map

obtained using the algorithm discussed in Reference 2.
Figure 2 shows the sample scene obtained from a cam-

era fixed on the nose of a helicopter flying at an altitude

Figure 3: Available Range Data

Figure 2: A Sample Image

of about 7 feet. Besides other things, the scene shows a

runway, and four vehicles parked on the two sides. The

instrumented nose boom of the helicopter is clearly visi-

ble at the top right hand part of the image. Parameters
identifying this frame are displayed in a sub-picture on

the top left hand side of the image.

This image consisted of a 512 x 512 pixel array,

with 8 bit gray-scale digitization. The range data was
obtained by processing several of these airborne cam-

era images using the vision-algorithm discussed in Ref-

erence 2. This algorithm produced range data at the
points denoted by small white squares in Figure 3. The

range data was available at 293 points on the image

plane. This represents about 0.1% of the possible

262,144 points. The range data is recovered only at

those points where a significant image intensity change

is detected between frames. However, note that the

algorithm determines the range to the four vehicles

parked on the sides of the runway.

For the purposes of illustration, the mission to be

flown was assumed to be that of a helicopter transi-

tioning from forward flight to a landing mode with zero

vertical velocity and small horizontal velocity. The tar-

get touch-down is chosen to be at a point between the

Stationary vehicles 1 and 2. The boundary conditions

corresponding to this trajectory were as follows. The

initial velocity vector was [0.0, -38.0, 0.0] T feet/s, and

the vehicle position vector was [532.0, 590.0, 7.0] T feet.

The specified final velocity and position vectors were

[1.0, 0.0, 0.0] T feet/s , and of [740.0, 0.0, 0.0] T feet

respectively. The weighting factors in the performance

index were chosen as ( = 0.96, a = 0.5,p = 0.0,/_ =
10 -06 . The flight time for this trajectory turns out to
be 20 seconds.

The evolution of the rotorcraft altitude as a func-

tion of down range is shown in Figure 4. Although the
present analysis considers only point obstacles, these

obstacles have been denoted by small circles for the sake

of clarity. The horizontal projection of the trajectory

is shown in Figure 5. In order to illustrate the obstacle

avoidance charecteristics of the trajectory, the distance

to the nearest obstacle at each time instant along the

vehicle trajectory is plotted in Figure 6. In the present

example, the minimum distance was about 8.25 feet.

Note that it may be possible to further increase this

clearance by increasing the obstacle avoidance weight

parameter/_. The rotorcraft airspeed along the trajec-

tory is shown in Figure 7. The vehicle initially accel-

erates through the turn before decelerating to satisfy

the specified terminal velocity. The temporal evolution

of the rotorcraft heading angle is illustrated in Figure

8. The guidance law commands a large heading angle
correction towards the end to meet the specified final

boundary condition on the airspeed. Throughout the
maneuver, the vehicle load factor was within 1.02, and

the maximum magnitude of the rotor thrust orientation

angle 0 was less than about 12 degrees. The bank angle
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¢ was well within 15 degrees as may be observed from
Figure 9. To get a feel for the nature of trajectories

produced by the guidance law, the rotorcraft trajec-

tory is next superimposed on the sample image using a
perspective projection in Figure 10. The point marked

with an inverted 'T' denotes the current position of the

helicopter. The vertical lines are used to indicate the

helicopter altitude above the runway surface along the

trajectory. The obstacle-avoidance characteristics are

apparent from this figure.
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Conclusions

Development of an obstacle-avoidance guidance

law that uses vision-based range data was presented.

This analysis used a sixth-order nonlinear poinbmass

model of the helicopter together with a linear combina-

tion of flight time, square of the rotorcraft acceleration

magnitude and the square of the distance to various ob-

stacles as the performance index. The obstacles were

represented as points.
The rotorcraft model was first transformed into lin-

ear, time-invariant form using a coordinate transforma-

tion. The guidance problem was then solved using the

transformed model. The resulting guidance law is in lin-

ear feedback form. Inverse transformation of the guid-

ance law yields the vehicle guidance commands. The

performance of the guidance law was illustrated using

a realistic vision-derived range data.

The present guidance law is useful for other vision-

based guidance tasks such as spacecraft docking and
autonomous vehicle guidance.

Figure 10: Perspective Projection of the Optimal Tra-

jectory on the Image Plane
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7. Conclusions

This report outlined the research carried out on the development of field-based ranging algorithms

for rotorcraft nap-of-the-earth flight. Based on various publications that have resulted from this work,

the contributions may be summarized as follows :

A field-based method for ranging using motion image sequences was developed by combining the

Horn-Schunk image constraint equation with expressions for incremental perspective projection

and an irradiance tracking filter. This scheme was tested using a simulated image sequence

and included the translational camera motion. The spatial-temporal sampling requirements to

obtain a specified ranging accuracy were examined.

The field-based ranging algorithm was next generalized to include both motion and stereo image

sequences by replacing the Horn-Schunk image constraint equation with a multi-dimensional

Taylor series approximation for the correspondence hypothesis. This step produces a set of

ranging equations, together with expressions that predict the error involved in the Taylor series

approximation. Several orders of the ranging algorithm was tested using laboratory image se-

quences. The lowest-order approximation was found to be adequate in most image sequences

collected in the laboratory.

The ranging algorithms require estimates of the spatial partial derivatives of the image irradi-

ances. A method for estimating partial derivatives by product factorization of the images was

developed. This method converts the partial derivative estimation problem into a set of linear

lumped-parameter estimation problems. This method was tested on several laboratory images

and found to produce excellent partial derivative estimates. The factorization approach for par-

tial derivative estimation was next used in conjunction with the ranging equation to yield a fast

stereo ranging algorithm.

By defining various coordinate systems and the incremental transformations, the image-based

ranging algorithm was extended to include rotational and translational motion of the rotorcraft

and the cameras. Both ranging equation as well as the range error equation were developed.

It was shown that ranging can be accomplished if the incremental translation and incremental

rotation angle of the camera are known.

The need for the computation of the partial derivative before ranging prompted research on

methods that do not require partial derivative estimates. Specifically, the stereo ranging problem

was examined. First, it was shown that a Pad_ approximation can be used to approximate

the correspondence hypothesis. Depending on the nature of the image sequence, it might be

useful to employ different orders of Pad_ approximation. For the stereo problem, the first-order

approximation produces a varying coefficient first-order linear ordinary differential equation.

This ordinary differential equation turns out to be identical to that synthesized by combining

the backward and forward Taylor series approximation of the correspondence equation. Instead

of satisfying this differential equation by first computing derivatives, an optimization problem

was posed whereby the irradiance predicated by the Pad_ approximation is compared with that

from the actual irradiance. Ranges that minimize the integral of the irradiance error along each

image line is then found using the necessary conditions for optimality.

Finally, research on using the discrete vision-based range data for optimal vehicle guidance was

initiated. The problem of optimally navigating a rotorcraft through a field of point obstacles was
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considered. This research used a point-mass vehicle model and a quadratic criterion. Necessary

conditions for optimality are then used to obtain a nonlinear feedback guidance law.

A few papers were presented at various national conferences based on the present research. These

are listed below in the order in which they appeared.

[1] Menon, P. K. A., and Sridhar, B., "Passive Navigation Using Image Irradiance Tracking," AIAA

Guidance, Navigation, and Control Conference, August 14-16, 1989, Boston, MA. Parts of this work

was also presented at NASA Vision Science and Technology Workshop, Nov. 30 - Dec. 2, 1988, NASA

Ames Research Center, Moffett Field, CA; and AIAA Houston Chapter Invitational Conference on

Guidance and Control, NASA Johnson Space Research Center, February 12, 1990.

[2] Menon, P. K. A., and Sridhar, B., "Image-Based Range Determination," AIAA Guidance, Naviga-

tion, and Control Conference, August 14-16, 1990, Portland, OR; Also being revised for the Journal

of Guidance, Control, and Dynamics. Parts of this work was also presented at NASA Workshop on

Vision-Based Rotorcraft Navigation, September 19, 1990.

[3] Menon, P. K. A., Chatterji, G. B., and Sridhar, B., "A Fast Algorithm for Image-Based Ranging,"

SPIE International Symposium on Optical Engineering and Photonics in Aerospace Sensing, April

1-5, 1991, Orlando, FL.

[4] Menon, P. K. A., Chatterji, G. B., and Sridhar, B., "Passive Obstacle Location for Rotorcraft

Guidance," AIAA Guidance, Navigation, and Control Conference, August 12-14, 1991, New Orleans,
LA.

[5] Menon, P. K. A., Chatterji, G. B., and Sridhar, B., "Electro-Optical Navigation for Aircraft,"

Submitted for consideration in the IEEE Transactions on Aerospace and Electronic Systems.

[6] Menon, P. K. A., Chatterji, G. B., and Sridhar, B., "Vision-Based Optimal Obstacle-Avoidance

Guidance for Rotorcraft," AIAA Guidance, Navigation, and Control Conference, August 12-14, 1991,

New Orleans, LA.

[7] Menon, P. K. A., Sridhar, B., and Chatterji, G. B., "Vision-Based Ranging as an Optimal Control
Problem," Paper communicated to AIAA Guidance, Navigation, and Control Conference, August 10

- 12, 1992, Hilton Head, SC.

With this background, the following items are suggested as promising future research directions.

1. The ranging algorithms discussed in this report use a pair of images. It is sometimes desirable

to carry out ranging using several images simultaneously. Indeed, such an approach may yield

more accurate range estimates. The field-based ranging algorithms need to be reformulated to

simultaneously handle mutiple images.

2. The present ranging algorithms uses just the scene irradiances and perspective projection ge-

ometry to construct range to various objects within the field-of-view. This process completely
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ignoresthe relationshipbetweensurfacebrightness,directionof illumination and the surface
orientation. Invokingappropriatereflectancemodelssuchasthe Lambertian surface model in

conjunction with the ranging equations developed under the present research may yield more

consistent range estimates. Such an approach would directly produce 3-D surface descriptions.
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